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CHAPTER 1: MOTIVATIONS FOR IDENTIFYING BIOMARKERS PREDICTIVE OF 
EPILEPSY 

1.1 Introduction 

Epilepsy is a serious neurological disorder that affects 5-10 people out of every 1,000, or 

approximately 1% of the global population (Hirtz et al., 2007; Sander, 2003) with an estimated 

3% lifetime prevalence (Wyllie, 2001).  It is also an ancient disorder, with the earliest references 

dating as far back as 2,000 BCE (Magiorkinis, Sidiropoulou, & Diamantis, 2010).  While 

advancements in technology and scientific understanding in the last century have enabled 

tremendous improvements in the management of epilepsy (Magiorkinis, Diamantis, 

Sidiropoulou, & Panteliadis, 2014), relatively little is known about the mechanisms that underlie 

seizure generation.  Because of this lack in understanding, epilepsy remains a disorder that can 

only be diagnosed upon the presenting symptom of recurring seizures and managed primarily 

through medication aimed at reducing seizure occurrence but stop short of actually targeting the 

underlying causes of the disorder (Cendes, 2012; Loeb, 2011; Temkin, 2009).   

To better steer research toward a cure for epilepsy, the updated 2014 NINDS Benchmarks 

for Epilepsy Research continues to promote endeavors that seek to understand causes of epilepsy 

along with means of preventing epilepsy through the identification of biomarkers as key 

priorities for the epilepsy research community ("2014 NINDS Benchmarks for Epilepsy 

Research," 2014).  Biomarkers that can be used to detect the development of epilepsy prior to 

seizure onset, monitor patients for therapeutic efficacy, and inform clinical trials of novel 

therapeutics are absolutely crucial to the improvement of epilepsy treatment. 

For the management of epilepsy, the first line of defense typically involves the trial of 

numerous anti-seizure drugs (ASDs), in an effort to identify the one or two medications that 

provide the most therapeutic benefit while balancing side effects and other drug interactions 
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(Moshé, Perucca, Ryvlin, & Tomson, 2014).  Even though many patients can achieve seizure 

freedom by medications alone, more than 30 percent of epilepsy patients experience inadequate 

seizure control on anti-seizure drugs (ASDs) (Kwan & Brodie, 2000) and may become 

candidates for epilepsy surgery if the seizures are of a focal nature (Engel & Ojemann, 1993). 

Accurate and precise localization of seizure onset regions are essential for treatment success, 

since failure to accurately and precisely localize these seizure-inducing regions of the brain can 

lead to the persistence of seizures after surgery.  The spatial resolution and sensitivity of scalp 

EEG is generally inadequate for precise seizure localization, which is generally achieved by 

using intracranial electrocorticography (ECoG), a highly invasive surgical procedure involving a 

craniotomy and placement of electrodes directly onto the brain, in conjunction with a battery of 

various imaging studies (Engel, 1993a; Noachtar & Borggraefe, 2009).  Even with such 

tremendous efforts, success is not guaranteed, as the reported long-term success rate of epilepsy 

surgery is estimated to vary tremendously between 30-85% (Engel, 1993b; Spencer & Huh, 

2008).  All of these issues point to the critical need for a non-invasive biomarker that can reliably 

localize sources of the seizure activity and act as an indicator of disease progression so that early 

intervention may be attempted and newer disease changing drug therapies may be tested more 

effectively (Engel et al., 2013). 

The fact that surgical resections can be curative implies the existence of key differences 

between epileptic and non-epileptic tissue in a patient affected by epilepsy.  Furthermore, the fact 

that these differences manifest clinically as large scale synchronized electrical discharges (e.g. 

seizures) implies the existence of some common final pathway within the disorder.  In order to 

identify and characterize these key differences, previous studies in our laboratory have compared 

gene expression profiles of tissues from both epileptic and non-epileptic regions of multiple 
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patients and have identified unique differences in the expressions of MAPK signaling and CREB 

activation in the superficial layers of the neocortex (Beaumont, Yao, Shah, Kapatos, & Loeb, 

2012; Rakhade et al., 2005).  The presence of these robust transcriptional differences are 

suggestive of downstream changes in protein and metabolite expression that can be probed using 

techniques such as magnetic resonance spectroscopy (MRS), which is ideally suited for such an 

application.  MRS has the ability to measure multiple biochemical species at once and the 

relative ease by which the technique may be translated from pre-clinical to non-invasive clinical 

applications makes it unique.  By using this technique, identified biochemical differences 

specific to epileptic regions of the brain can be used to develop non-invasive biomarkers of 

epileptic activity, addressing an urgent but still unmet need in both epilepsy research and clinical 

management of the disorder. 

1.2 Interictal epileptiform discharges as a surrogate for epileptic activity 

Seizures are formally defined as “the clinical manifestation of an abnormal, excessive, 

hyper-synchronous discharge of a population of cortical neurons”.  When seizures occur 

repeatedly without external provocation, it becomes epilepsy (Bromfield, Cavazos, & Sirven, 

2006; Fisher et al., 2005).  However, in between seizure episodes (i.e. interictal), a form of 

paroxysmal and abnormally synchronized neuronal discharges called interictal epileptiform 

discharges (IEDs1) can also frequently occur.  Intriguingly, IEDs tend to remain relatively 

localized with minimal spread and are not generally associated with specific observable 

symptoms but appear as spikes or clusters of spikes on EEG.  Nonetheless, they are clinically 

                                                
1 Although the terms “IED” and “interictal spikes”/“spikes” may appear interchangeable in some instances through 
out this text, for the purposes of this dissertation, the term “IED” is generally used to refer to the specific 
electrophysiological phenomenon, while “spikes” or “interictal spikes” are used to refer to the waveform typically 
observed on EEG that corresponds to the occurrence of IEDs. 
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useful for the diagnosis of epilepsy and guiding management approaches (Lüders, Engel, & 

Munari, 1993; Pillai & Sperling, 2006). 

While the exact relationship between IEDs and seizure activity remains to be elucidated, 

they often occur in close proximity to each other and surgical removal of both seizure onset and 

IED regions tend to produce superior results over the removal of the seizure onset region alone 

(Asano et al., 2003; Bautista, Cobbs, Spencer, & Spencer, 1999; Kanazawa, Blume, & Girvin, 

1996; Lee, Kim, Jeong, & Chung, 2014).  While IEDs are generally perceived as subclinical or 

asymptomatic (Gibbs, 1936), they have been demonstrated to disrupt cognitive and neurologic 

functions (Aarts, Binnie, Smit, & Wilkins, 1984; Sanchez Fernandez, Loddenkemper, 

Galanopoulou, & Moshe, 2015; Schwab, 1939).  Suppression of IEDs using lamotragine has 

demonstrated beneficial behavioral effects in children with well-controlled epilepsy (Pressler, 

Robinson, Wilson, & Binnie, 2005).  Animal studies using a kainate model of epilepsy have also 

shown that IEDs typically precede the onset of spontaneous recurrent seizures and an increased 

number of IEDs during the prodromal phase was positively correlated with earlier onset of 

established epilepsy (White et al., 2010).  These observations suggest that IEDs may potentially 

be used as a predictive biomarker for the development of chronic epilepsy and are worthy of 

further study. 

Previous works in our laboratory have shown that the frequency and amplitude of IEDs 

are strongly correlated to a set of activity-dependent differences in gene expression (Rakhade et 

al., 2005), while a similar relationship between gene expression differences and seizure activity 

was not found (Rakhade et al., 2007).  This set of activity-dependent genes strongly implicate the 

pathway involving cAMP response element binding (CREB) protein dependent transcription via 

mitogen-activated protein kinase (MAPK) signaling, especially in the superficial layers II/III of 
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the neocortex both in humans (Beaumont et al., 

2012) and in a rat model of epilepsy (Barkmeier et 

al., 2012).  Collectively, these findings suggest that 

IEDs may play a key role in generating or 

maintaining an epileptic focus in a MAPK-CREB 

dependent manner (Figure 1.1).  Furthermore, 

because IEDs typically occur more frequently than 

seizures, they can potentially serve as a sensitive 

marker of epileptogenesis, capable of reflecting 

epileptogenic changes prior to the establishment of epilepsy (Engel et al., 2013). 

1.3 1H Magnetic resonance spectroscopy as a tool for biomarker detection 

The very fact that surgical resection can be curative for epilepsy indicates that affected 

regions are physiologically different from their normal counterparts.  These physiological 

differences are likely downstream consequences differences in gene expression between epileptic 

and non-epileptic regions.  These differences may further manifest as metabolic differences and 

be reliably probed by the right tool and used as crucial biomarkers for epileptogenesis or act as 

surrogate markers for therapeutic efficacy.  The ability to simultaneously measure numerous 

spatially localized compounds associated with brain metabolism and the relative ease by which 

the technique may be translated between in vitro, ex vivo, and non-invasive in vivo applications, 

makes MRS a tremendously powerful tool for studying epilepsy and for identifying biomarkers 

of the disorder.  We hypothesized that we can indeed identify potential metabolite biomarkers 

that are predictive of epilepsy and epileptogenesis using 1H MRS techniques and have 

formulated our aims and approach accordingly.  The section below (Chapter 1, Section 1.4) 

 
Figure 1.1 A theoretical framework for 
conceptualizing the interactions 
between molecular responses to insult, 
IEDs, seizures, and the self-reinforcing 
nature of epilepsy. 

 

Original insult

MAPK/CREB activation

Transcriptional changes
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provides further details on the aims and scopes of this project.   Additional information on the 

theory of MRS, what it measures, and how it has been applied to epilepsy thus far are provided 

in Chapter 2. 

1.4 Project scope and aims 

There are 2 central aims we hope to address in this project: 1) identification of potential 

biomarkers of established epilepsy in human tissue and 2) identification of potential biomarkers 

for the development of epilepsy in an appropriate animal model of epileptogenesis and determine 

whether these biomarkers of epileptogenesis share commonalities with those of established 

epilepsy as identified in aim 1. 

To address our first aim of identifying biomarkers in established epilepsy, we applied a 

high resolution version of 1H MRS to surgically resected epileptic and non-epileptic (based on 

their relative levels of IED activity) tissue samples ex vivo.  These tissue samples are acquired 

from patients with intractable epilepsy undergoing surgical resection of their epileptic focus as 

part of their clinical treatment plan.  Using an unbiased statistical classification approach, we 

demonstrate the ability of 1H MRS ex vivo to identify a unique metabolite profile capable of 

distinguishing between epileptic and non-epileptic tissue samples.  We also integrated these 

metabolite findings with findings obtained from parallel transcriptional microarrays and 

histology studies to help us better appreciate the possible molecular and cellular features 

contributing to these metabolite differences.  The details of this study are given in Chapter 3. 

Studying tissue samples from intractable epilepsy patients allows us to characterize the 

metabolite profiles of long established epilepsy, but does not necessarily give us information 

about metabolite changes associated with the development of epilepsy (i.e. epileptogenesis).  

Studying the latter requires a longitudinal study design, which is most easily implemented in a 
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suitable animal model of epileptogenesis since we do not have the ability to predict or monitor 

this process in human patients.  Hence, to accomplish our second aim of identifying biomarkers 

of epileptogenesis, we turned to a rat model of epileptogenesis with persistent and spontaneous 

IEDs and similar molecular changes in MAPK-CREB expression, achieved by injecting tetanus 

toxin directly into the animal’s somatosensory cortex.  After treatment with tetanus toxin, we 

followed these animals longitudinally over the course of five weeks by performing EEG 

recordings and 1H MRS scans at periodic intervals to study the interaction between 

electrophysiology and metabolite levels over time.  These animal studies will further help to 

determine whether or not IEDs could sufficiently account for the metabolite differences observed 

in our ex vivo human study. Detailed descriptions of this study are provided in Chapter 4. 
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CHAPTER 2: BRIEF INTRODUCTION TO MRS AND ITS APPLICATIONS IN 
EPILEPSY 

2.1 What is MRS and what does it measure? 

MRS, also commonly known as nuclear magnetic resonance (NMR) spectroscopy, is one 

of the oldest magnetic resonance based analytical techniques and the subject of two Nobel Prizes 

in Physics.  The first was awarded to Isidor Isaac Rabi in 1944 for discovering the NMR 

phenomenon (Nobel Media AB, 2014a) and the second was shared between Felix Bloch and 

Edward Mills Purcell in 1952 for applying NMR in a way that enabled analysis of ordinary 

liquids and solids (Nobel Media AB, 2014b).  While a full treatise on the theory of MRS and its 

applications is beyond the scope of this work, a basic summary of relevant concepts is provided 

and a more thorough treatment of the subject may be found elsewhere (De Certaines, Bovée, & 

Podo, 1992; De Graaf, 2007; Keeler, 2005). 

NMR is a phenomenon where a population of atomic nuclei possessing both intrinsic 

magnetic moment and angular moment (i.e. non-zero spin), will align themselves along an 

external magnetic field (B0) with a net magnetization M0 and precess at a characteristic 

resonance frequency, known as the Larmor frequency (Figure 2.1A).  This precession frequency 

(ω, in rad sec-1, or ν, in sec-1 or Hz) is predicted by the Larmor equation (Equations 1.1 and 1.2) 

and is proportional to the strength of the external magnetic field (in Teslas or T) and intrinsic 

properties of the nucleus given by the gyromagnetic ratio (γ, in rad sec-1 T-1).  These nuclei can 

be induced to change orientation when under the influence of an applied magnetic field (B1) that 

is usually perpendicular to B0 (Figure 2.1B) and is generated by an excitatory radio frequency 

(RF) pulse delivered at the same resonant frequency.  As the nuclei relax back to equilibrium, the 

transverse component of their net magnetization will produce a decaying RF signal with their 

precession frequency as the carrier frequency (Figure 2.1C-D).  This decaying RF signal, called 
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the free induction decay (FID), is detected by the receiver coil and contains useful information 

about the nuclei that generated it. 

  (Equation 1.1) 

  (Equation 1.2) 

 
Figure 2.1 Creation of a transverse magnetization. A) Net magnetization (M0) is created in the 
presence of an external magnetic field B0.  B) Application of a perpendicular magnetic field (B1) 
causes M0 to precess about B1. C) Turning off B1 after M0 has been flipped 90° will cause M0 to 
precess about B0 once again, but in the transverse plane.  D) This transverse magnetization is 
detected in a receiver coil as it relaxes back to equilibrium, generating the FID signal. 
 

The Fourier transform can be applied to this time domain signal to obtain the frequency 

components that make up the signal in the form of peaks along a frequency axis, in what is 

referred to as a spectrum.  Ideally, when there is no delay in signal acquisition from the moment 

the FID is formed, the number of nuclei contributing to the peak is proportional to the integrated 

area under the peak.  A larger area under the peak at a particular frequency indicates more nuclei 

contributing to the signal at that frequency.  The shape of the peak is strongly influenced by the 

FID decay rate; lower decay rates result in taller but narrower peaks, faster decay rates result in 

shorter but broader peaks, whilst area under the peak remains the same. 

Theoretically any nucleus with non-zero spin, typically isotopes with odd atomic 

numbers, may be studied using MRS.  However, only a relatively short list of nuclei can be 

studied practically due to restrictions on time, equipment, and abundance.  Some of the most 
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commonly studied nuclei include: 1H, 31P, 13C, 23Na, and 19F.  For biological applications, 1H 

MRS (i.e. applying the RF pulse at the resonance of the 1H isotope) is generally the most 

common due to its relatively high sensitivity, owing to its high abundance.  It also has the ability 

to simultaneously probe for multiple metabolites that affect various aspects of cell function from 

membrane components to neurotransmitters.  In general, 1H MRS is able to reliably detect 

metabolites with concentrations of 0.5 to 1 mmol/kgwet weight or greater (Govindaraju, Young, & 

Maudsley, 2000).  The work presented here also uses 1H MRS to identify potential biomarkers of 

epilepsy.  

Within a particular compound, MRS is able to resolve and characterize specific chemical 

moieties involving the nucleus of interest along a chemical shift frequency axis.  Each peak 

along this chemical shift axis reflects the unique resonance frequency (ν) of a particular chemical 

moiety contain the nucleus of interest.  For practical purposes, these frequencies are generally 

represented as a chemical shift (δppm) relative to a reference frequency (νref) in parts per million 

(ppm), which makes it independent of magnetic field strength (Equation 1.3).  The additional 

scaling factor of 106 is included to improve legibility, since the shift value is generally very small.   

  (Equation 1.3) 

Chemical shifts result from differences in the local magnetic environment experienced by 

the nuclei of interest.  The presence of an electron cloud near a nucleus produces a shielding 

effect that decreases the strength of the external magnetic field experienced by the nucleus.  As a 

result, the nucleus will precess at a lower resonant frequency than a similar nucleus with less 

shielding.  To illustrate, long triglyceride fatty acid chains with its dense arrangement of 

hydrogen atoms along a carbon backbone will have a larger electron cloud and consequently 

δppm =
ν−νref
νref

&× &106
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experience stronger shielding than the hydrogen atoms in water, which experiences significantly 

less shielding in the presence of the electronegative oxygen atom.  This difference in shielding 

produces a 3.5 ppm chemical shift between the water and fat peaks on the chemical shift axis.  

Most of the metabolites examined in 1H MRS fall between the water and fat peaks. Typical 

metabolites peaks found in 1H MRS in vivo are described in Table 2.1. 

 
Table 2.1 List of common metabolites seen in vivo, their chemical shift positions, and their 
known key functions.  In general, NAA, Cr+PCr, and GPC+PCh are the three most visible 
metabolite peaks on 1H MRS.  Lac is generally below threshold of detection under normal 
physiologic conditions.  Glutamate and glutamine peaks show significant overlap at 1.5 T but 
may be resolved reliably at 3 T or higher.  Creatine plus phosphocreatine (Cr + PCr) , glutamine 
(Gln), glutamate (Glu), glycerophosphorylcholine plus phosphorylcholine (GPC+PCh), lactate 
(Lac), myo-Inositol (m-Ins), N-acetylaspartate (NAA). 
 

 To enable spatial localization in MR studies, magnetic field gradients can be added 

linearly to the main magnetic field as a function of position, such that different locations will 

experience a slightly different magnetic field strength.  Referring back to the Larmor equation 

(Equation 1.1), a natural consequence of this spatially dependent variation in magnetic field 

strength is that the nuclei in each of those locations will also precess at a different resonant 

frequency, depending on where they are located in space.  Frequency selective RF pulses can 

then be applied to study only those nuclei in the region of interest (ROI). 

Single voxel spectroscopy (SVS) and MR spectroscopic imaging (MRSI) are the two 

most common techniques used for spatial localization in MRS studies.  SVS uses three 

Metabolite Chemical Shift (ppm) Key Function

Cr+PCr 3.03 Energy metabolism; ATP generation via CK reaction

Gln 2.45 Component of glutamate-glutamine cycle; converted from glutamate in 
astrocytes

Glu 2.35 Excitatory neurotransmitter; component of glutamate-glutamine cycle

GPC+PCh 3.20 Intermediates of membrane phospholipid breakdown (GPC) and 
synthesis (PCh) pathways

Lac 1.31 Indicator of hypoxia; insufficiency of oxidative phosphorylation

m-Ins 3.52, 3.62 Part of IP3 intracellular second messenger system

NAA 2.01 Marker of neuronal integrity
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orthogonal slice selective RF pulses to isolate a rectangular or cubic ROI, located at the 

intersection of those three orthogonal slices.  This region of interest may be moved about and 

adjusted to an adequately small size to ensure that it is not contaminated with signals from 

adjacent tissue.  However, SVS can only acquire from a single location at a time and generally 

require multiple averaging scans (typically 64 to 256) to produce a spectrum of reasonably 

quality.  This makes the scanning of a large number of voxels prohibitively time consuming.  To 

collect spectra from a larger area, MRSI, which uses a localization scheme different from SVS, 

can be more efficient approach, as it can makes use of every scan done over the entire area to 

improve the signal to noise ratio of every voxel in a large array of voxels.  The larger ROI 

associated with MRSI will, however, place a much greater demand on the shim systems to 

maintain magnetic field homogeneity over the entire area (Hetherington, Kim, Pan, & Spencer, 

2004). Poor magnetic field homogeneity will create large variances in precession frequency 

within the ROI due to the variations in the magnetic field strength.  This results in broader peaks 

in the frequency domain and impairs the ability of MRS to resolve and quantify the detected 

compounds due to increased overlap of peaks that would have been adequately separated from 

each other otherwise. 

While in vivo MRS studies are most ideal for studying the metabolite profile in living 

organisms, high resolution MRS studies performed on biological samples ex vivo can provide 

provide a wealth of metabolite information with exquisitely high sensitivity not typically 

achievable in vivo.  One particular ex vivo 1H MRS approach, known as high resolution magic 

angle spinning 1H MRS (HR-MAS 1H MRS), is unique its ability to analyze frozen intact tissue 

without the need for histologically disruptive chemical extractions.  It does so by rapidly 

spinning the sample at the so-called magic angle of 54.7° relative to main static magnetic field in 
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order to minimize the spectral-broadening effects of dipole-dipole interactions in solid state 

samples (Andrew, Bradbury, & Eades; Beckonert et al., 2010).  For the study of intact tissue 

samples, this technique is superior to many of the common chemical extraction procedures, 

where the choice of solvent will impact the types of metabolite available for analysis (e.g. 

hydrophilic versus hydrophobic) and any available information on tissue compartmentalization 

and localization would also be completely lost (Beckonert et al., 2010; Cheng et al., 1996; 

Srivastava et al., 2008). 

MRS is an inherently non-invasive technique that relies primarily on strong magnetic 

fields and RF pulses to generate signals of interest that contain valuable information about the 

concentrations, characteristics, and environments of the compounds contributing to the signals. 

The ability to change the size and location of ROIs also allows MRS to be very selective about 

which sites to study while still being flexible enough to study much larger areas (e.g. the entire 

brain) as needed.  When used as a complement to other experimental procedures, MRS can also 

characterize in vitro and ex vivo samples, providing results that may be translated to their in vivo 

counterparts with relative ease.  These are all very important features for any potential biomarker 

tool, but especially so for epilepsy, as we would greatly benefit from being able to perform 

multiple longitudinal measurements to track biochemical changes in the brain, particularly in 

regions that are most relevant for seizure generation.  We can further complement these findings 

with additional experimentally derived findings obtained ex vivo or in vitro.  For these reasons, 

MRS can be an extremely powerful tool for the study of epilepsy biomarkers. 

2.2 MRS in epilepsy 

While 1H MRS is primarily used as an adjunct diagnostic tool for epilepsy in the clinical 

setting, it can still give important lateralization or localization information, especially in more 
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difficult cases with negative or ambiguous MRI and EEG findings.  In a research capacity, 

epilepsy has been studied since the mid-1980s using 31P MRS, a method that preferentially 

probes metabolites associated with tissue energetics such as high-energy phosphates groups of 

ATP, phosphocreatine (PCr) and low energy inorganic phosphate (Pi).  In general, however, 

there have been more 1H MRS epilepsy studies than 31P due to its relatively high sensitivity, 

which leads to greater spatial resolution.  Furthermore, from a hardware perspective, 31P MRS 

studies require dual-tuned coils to probe both 1H and 31P nuclei at their own unique resonant 

frequencies, which is frequently unavailable on clinical MR systems. 

The earliest 31P MRS studies characterized animal models during status epilepticus and 

noted decreases in both PCr and cerebral pH (Petroff, Prichard, Behar, Alger, & Shulman, 1984) 

as well an elevation in Pi (Young et al., 1989).  Concordance between temporal lobe epilepsy 

lateralization using PCr/Pi and ATP/Pi ratios and final clinical lateralization has been reported to 

be 70-73%, which was superior to lateralization by MRI or scalp EEG alone (Chu et al., 1998).  

Later 31P MRS studies of temporal lobe epilepsy patients provided evidence of bioenergetic 

impairments with consistent decreases in the PCr/Pi ratio (Kuzniecky, Elgavish, Hetherington, 

Evanochko, & Pohost, 1992) as well as ATP/Pi (Chu et al., 1998) and PCr/ATP (Hetherington et 

al., 2004).  The decreases in PCr/Pi and PCr/ATP may be mitigated or reversed by initiation of 

the ketogenic diet in some intractable epilepsy cases (Pan, Bebin, Chu, & Hetherington, 1999). 

Over the last several decades, most 1H MRS studies of epilepsy, particularly those 

involving temporal lobe epilepsies, have consistently reported decreases in N-acetylaspartate 

(NAA), expressed either independently or as a ratio with creatine plus phosphocreatine 

(Cr+PCr), glycerophosphorylcholine plus phosphorylcholine (GPC+PCh), or Cr+PCr plus 

GPC+PCh (Cr+PCr+GPC+PCh) (Bernasconi, Tasch, Cendes, Li, & Arnold, 2002; Breiter et al., 
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1994; Cendes, Caramanos, Andermann, Dubeau, & Arnold, 1997b; Connelly, 1997; Matthews, 

Andermann, & Arnold, 1990).  NAA is considered to be a marker of neuronal healthy and 

participates in a number of biochemical processes, including lipid synthesis and mitochondrial 

energy production (Moffett, Ross, Arun, Madhavarao, & Namboodiri, 2007). The reduction of 

NAA does not necessarily correlate to neuronal loss in epilepsy (Kuzniecky et al., 2001; Petroff, 

Errante, Rothman, Kim, & Spencer, 2002) and may be reversed in many cases after successful 

resective surgery (Cendes, Andermann, Dubeau, Matthews, & Arnold, 1997a; Hugg et al., 1996; 

Serles et al., 2001).  Despite the fewer number of studies on non-lesional and non-temporal lobe 

epilepsies, similar decreases in NAA and its ratios to Cr+PCr, GPC+PCh, and 

Cr+PCr+GPC+PCh, have also been reported (Connelly et al., 1998; Garcia et al., 1995; Stanley, 

Cendes, Dubeau, Andermann, & Arnold, 1998). 

In addition to NAA, differences in glutamate, lactate, and γ-aminobutyric acid (GABA) 

levels have also been reported.  Several lines of evidence point to elevated extracellular 

glutamate levels compared to controls, particularly in temporal lobe epilepsies with negative 

MRI findings.  Glutamate is thought to play a role in promoting hyperexcitability, leading to 

seizure development (Cavus et al., 2005; Pan et al., 2008; Simister et al., 2002). Patients actively 

experiencing seizures or shortly after a seizure episode have also been reported to have elevated 

lactate levels at or near the site of the seizure focus (Cendes, Stanley, Dubeau, Andermann, & 

Arnold, 1997c).  However, interictally, lactate is generally undetectable (Breiter et al., 1994) in 

otherwise normal appearing tissue using standard 1H MRS approaches.  Works by Petroff and 

colleagues suggest that poor seizure control may be associated with lower levels of GABA in the 

brain (Petroff, Rothman, Behar, & Mattson, 1996b) and treatment with certain ASDs such as 

vigabatrin, gabapentin, and topiramate may increase GABA levels and consequently increase 
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seizure threshold (Petroff, Hyder, Mattson, & Rothman, 1999; Petroff, Rothman, Behar, Collins, 

& Mattson, 1996; Petroff, Rothman, Behar, Lamoureux, & Mattson, 1996; Petroff, Rothman, 

Behar, & Mattson, 1996a). 

2.3 Challenges of studying epilepsy using 1H MRS 

Despite decades of available literature on 1H MRS studies of epilepsy, vast majority of 

these studies focused specifically on temporal lobe epilepsies.  While the study of temporal lobe 

epilepsies is no doubt important, this skew also highlights the multitude of challenges associated 

with using MRS for studying epilepsy and points to where progress is urgently needed.  

Furthermore, the integration of multiple experimental modalities in addition to 1H MRS is 

needed to better characterize the biochemical changes underlying the observed metabolite 

differences in order better understand and validate the ability of 1H MRS to identify key 

biomarkers in epileptogenesis and to serve as a surrogate marker of therapeutic efficacy. 

First, most existing 1H MRS methodologies do not have the coverage necessary to study 

the entire brain with high spatial resolution.  Traditional single voxel techniques require the 

regions of interest to be defined a priori, which is frequently the hippocampus in the case of 

temporal lobe epilepsies.  However, such prior knowledge is generally unavailable for non-

temporal lobe cases, particularly in the more difficult cases with negative anatomic MRI 

findings.  While spectroscopic imaging studies have made some headway in characterizing the 

metabolomic profile of epileptic versus non-epileptic brain regions by providing increased 

coverage with relatively high spatial resolution generally along a pre-defined two-dimensional 

plane, this plane of interest needs to be defined a priori, and as a result these studies also tend to 

focus on the temporal lobe structures (Hetherington et al., 2007; Pan et al., 2012).  Only recently, 

with continued development of the echo-planar spectroscopic imaging (EPSI) technique (Posse, 
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DeCarli, & Le Bihan, 1994) by Maudsley and colleagues, has whole brain coverage become a 

possibility (Maudsley et al., 2006; Maudsley et al., 2009a; Maudsley, Domenig, & Sheriff, 

2009b).  The application of this technique to epilepsy has been promising for non-temporal lobe 

epilepsies and its findings have been consistent with those in existing literature (Maudsley, 

Domenig, Ramsay, & Bowen, 2010; Mueller et al., 2010). 

Second, existing MRS studies of epilepsy generally do not have the spatial resolution 

needed to selectively study a particular tissue type but will instead capture a mixture of gray 

matter, white matter, and cerebrospinal fluid (CSF) in what is called a partial volume effect.  

This distinction is important because gray and white matter have differing concentrations of 

metabolites (Hetherington et al., 1994; Hetherington et al., 1996; Kreis, Ernst, & Ross, 1993).  

Therefore, varying ratios of gray matter, white matter, and CSF can dramatically impact the 

interpretation of the findings in a typical MRS study.  Although the metabolite values may be 

statistically corrected to improve sensitivity (Chu et al., 2000), many studies do not perform such 

corrections or may opt to circumvent the issue by judicious placement of the ROI over a 

particular structure of interest (e.g. hippocampus).  Given the layer-specific distribution of gene 

expression differences between epileptic and non-epileptic neocortex observed by our laboratory, 

this issue of gray and white matter composition would appear to be especially important to 

consider in an MRS study of neocortical epilepsy. 

Finally, very few studies have examined the relationship between 1H MRS metabolites 

and electrophysiology parameters such as IEDs or seizure frequency (Hammen et al., 2007; Park 

et al., 2002; Serles, Li, Caramanos, Arnold, & Gotman, 1999), and even fewer studies have 

attempted to further examine those changes in the context of genetic or histologic changes 

between epileptic and non-epileptic regions (Peeling & Sutherland, 1993; Petroff, Pleban, & 
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Spencer, 1995) and none of them were done in recent years.  The past several years have seen an 

increased ubiquity of high field strength systems with more advanced hardware capabilities 

resulting in much improved sensitivity.  With this increase in the power of 1H MRS to detect 

metabolite differences, interpretation and validation of these differences becomes increasingly 

important in the process of identifying reliable and relevant biomarkers for epilepsy that may be 

translated for clinical use.  This degree of validation and characterization can only be 

accomplished through the combination of multiple experimental modalities and approaches. 

This project seeks to address some of these issues by combining 1H MRS measurements 

with other transcriptional, cellular, and electrophysiological parameters collected in parallel with 

our well localized ex vivo tissue from the superficial layers of the epileptic human neocortex.  

Our end goal is to identify relevant 1H MRS metabolite biomarkers that can also inform us about 

the underlying molecular changes taking place in these patients.  Our longitudinal study using a 

rat model of epileptogenesis in vivo attempts to investigate the complex relationship between 

electrophysiological changes and metabolite changes in the rat neocortex overtime.  The results 

from this in vivo animal study can also serve as a validation of our findings from the ex vivo 

human tissue study. 
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CHAPTER 3: A UNIQUE METABOLITE PROFILE PREDICTIVE OF EPILEPTIC 
NEOCORTEX IN HUMANS EX VIVO 

3.1 Summary 

Identifying biomarkers that reliably detect epileptic brain regions is crucial for accurate 

diagnosis and therapy development.  At present, only surgically invasive, direct brain recordings 

are capable of detecting these regions with precision.  We performed an integrated metabolomic-

genomic-histological analysis of electrically mapped human cortical tissue samples from 

epilepsy surgery patients using high resolution magic angle spinning (HR-MAS) 1H MRS and 

cDNA microarrays.  We found a highly consistent and predictive metabolite logistic regression 

model with reduced lactate and increased creatine plus phosphocreatine (Cr+PCr) and choline 

(Cho), suggesting a chronically altered metabolic state in epileptic brain regions. Linking gene 

expression, cellular, and histological differences to these key metabolites using a hierarchical 

clustering approach revealed altered metabolic vascular coupling.  Consistently, this pattern 

correlated strongly to neovascularization associated with recently discovered, millimeter-sized 

histological microlesions. These results provide evidence for spatially segregated metabolic 

derangements indicative of underlying vascular and synaptic aberrations in human epileptic brain 

regions that could be used to develop non-invasive clinical biomarkers of epilepsy. 

3.2 Introduction 

As mentioned in Chapter 1, epileptic regions of the brain produce abnormal synchronous 

discharges across large populations of neurons.  These discharges can remain isolated, as in the 

case of IEDs, or they can propagate and affect large regions of the brain, resulting in seizures.  

While the exact relationship between interictal spiking and seizures is not understood (Gotman, 

1991), their localization is highly concordant and the removal of both regions is associated with 

improved surgical outcome (Asano et al., 2003; Bautista et al., 1999; Kanazawa et al., 1996; Lee 
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et al., 2014). Animal studies have shown that interictal spikes may precede and hence be a 

biomarker of seizure development (White et al., 2010).  Here, we are specifically interested in 

identifying metabolite biomarkers that can classify high versus low spiking tissue samples, with 

the inference that high spiking activity more readily reflects epileptic tissue while low to no 

spiking tissue more readily reflects normal tissue. 

As part of our systems biology of epilepsy program (SBEP) (Loeb, 2011), we collected 

electrically-mapped regions of human neocortex from patients undergoing long-term invasive 

monitoring with ECoG to localize precisely regions that produce seizures and interictal spiking 

(Loeb, 2011) (Figure 3.1). SBEP was designed to integrate quantitative clinical, neurochemical, 

electrical, and genomic signatures of different brain regions with and without significant 

epileptic activities (Beaumont et al., 2012; Dachet et al., 2015; Lipovich et al., 2012; Rakhade et 

al., 2005).  By knowing the in vivo electrical behavior of each resected piece of tissue, we have a 

unique ability to compare highly epileptic brain regions to nearby electrically quiet regions of 

each patient serving as internal controls.  Studies from this program have implicated layer-2/3-

specific activation of MAPK and CREB signaling and the presence of deeper “microlesions” that 

show a dramatic reduction in axodendritic connectivity in brain regions with high levels of 

epileptic activity (Dachet et al., 2015).  

MRS is a technique for characterizing compounds associated with tissue metabolism with 

high translational potential since it can be applied to both intact tissue samples ex vivo as well as 

to animal models and human patients in vivo.  As reviewed in Chapter 2, previous 1H MRS 

studies of epilepsy have demonstrated perturbations in the neurochemistry of epilepsy patients 

and have assisted in efforts to lateralize or localize the epileptic focus, particularly in temporal 

lobe epilepsies; however, a highly sensitive and specific set of non-invasive biomarkers have yet 
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to emerge in part due to uncertainties in localization, poor spatial distinction of epileptic and 

non-epileptic brain regions, and studies being done using relatively low field strength MR 

systems (e.g. 1.5T systems).  

Here, we addressed these challenges by using human tissues precisely localized from 

ECoG brain recordings in vivo and analyzed the samples by using an ultra-high field 

spectrometer at 11.7 T using HR-MAS 1H MRS, which allows for metabolite profiling of intact 

brain tissue with superior spectral resolution (Andrew et al., 1959; Cheng et al., 1996; Cheng et 

al., 1997).  We asked whether focal regions of human neocortex have a unique metabolomic 

signature that may be adapted for use as non-invasive biomarkers of epileptic activity. More 

specifically, we performed HR-MAS 1H MRS on neocortical tissue samples from 9 patients 

undergoing surgical treatment for their intractable epilepsy.  Their clinical ECoG data were used 

to quantify the interictal spiking rates in various regions of their brain in order to identify which 

tissue sample can be classified as high spiking and which sample can be classified as low 

spiking.  Using the measured metabolites, we were able to construct a metabolite profile that is 

able to predict whether or not a particular piece of tissue sample was high or low spiking with 

great accuracy. We also performed additional genome wide expression studies using Agilent 

microarrays and histology on the same tissue samples to characterize transcriptional, cellular, 

and histological features associated with their metabolite profile (Figure 3.1). 

Given the robust gene expression differences between high and low interictal spiking 

activity in MAPK/CREB activation and the downstream consequences they would presumably 

have on protein and small molecule expression, we expect to be able to detect differences in 

downstream 1H MRS metabolite levels between high and low spiking tissues.  A relative 

decrease in NAA levels within high spiking regions is expected, since that is the observed 
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metabolite feature of epilepsy most consistently reported in literature. 

 
Figure 3.1 Human brain tissues were removed as part of planned surgery for refractory epilepsy.  
Regions of high and low spiking were identified based on long-term subdural ECoG.  Each 
section of tissue was precisely mapped to the overlying subdural electrode and then split into two 
halves.  One half as used for histology while cortical gray matter is isolated from the other half.  
The cortical gray matter is then further divided into two portions, half of which is used to 
generate RNA for microarray analysis while the other half is used for HR-MAS 1H MRS. 
 

3.3 Methods 

3.3.1 Isolation of human tissue and electrophysiology 

Brain tissue samples from our 9 human subjects with refractory epilepsy were obtained 

with informed consent as part of a research protocol approved by the Wayne State University 

Institutional review Board and their participation in the study had no influence on their clinical 

care or treatment plan.  Their age, gender, and other relevant clinical features are given in Table 

3.1.  All 9 subjects underwent two-stage surgery with long-term subdural ECoG, where Stage 1 

consisted of initial electrode placement for long-term recording and observation, followed by 

Stage 2, where the seizure generating areas identified in Stage 1 were resected.  Briefly, interictal 

spiking activity on ECoG were determined by averaging spike counts from 3 independent 10 min 

segments of ECoG recording, which were continuously recorded for at least 3 days prior to 

resection.  Electrode placements were mapped precisely to their corresponding locations on the 
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neocortex using a combination of intraoperative electrode placement photos, as well as pre- and 

post-placement head CT, MRI, and X-rays.  A tissue sample block at each electrode location was 

removed and divided into two halves.  One half fixed in 4% paraformaldehyde for use in 

histological studies while the other half was stored frozen at minus 80°C until it can be used for 

further analysis (Figure 3.1). 

Because of the great variance between patients in absolute spike frequency between 

regions considered for high and low spiking, we dichotomized spike frequency into “high” and 

“low” spiking categories in order to reduce strong leverage effects.  For each patient, the 

subdural electrode demonstrating the highest spiking frequency was classified as “high spiking” 

and the electrode with the lowest or no spiking is classified was “low spiking.”  In this manner, 

 
Table 3.1 Profile of patients with neocortical epilepsy and the corresponding tissue samples that 
were used for this study.  Spike frequency reflects epileptiform spike rates for both high and low 
spiking regions in the patient’s brain, recorded in vivo using ECoG as part of their clinical 
treatment plan.  Microarray characteristics show percent of genes that are at least 1.4 fold 
increased or decreased (after FDR correction to 1%) in expression in high spiking relative to low 
spiking samples. Documented tissue pathologies (“Other tissue diagnoses”) were made from 
separate clinical tissue samples and were not present in the tissues used for this study, which 
were normal appearing on histology.  Abbreviations: acute inflammation (AI), blurring of grey-
white junction (BGW), bifrontal subcortical heterotopias (BSH), cortical dysplasia (CD), 
probable cortical dysplasia (CD?); diffuse gliosis (DG), epileptic spasms (ES), heterotopia (H), 
mild cortical dysplasia (MCD), mild gliosis (MG), data not available (NA), normal laminar 
pattern (NLP), polymicrogyria (P), partial complex (PC), periventricular mild increase in FLAIR 
(PE), porencephalic cyst (PO), secondary generalized: evolution from focal to bilateral, 
convulsive seizure (SG), superficial heterotopia (SupH), thickened cortex (TC), increased white 
matter signal (W), white matter gliosis (WG). 
 

Patient ILAE  
Classification 

Age 
of  

Onset 

Age at  
Surgery Sex Region MRI  

Findings 

Outcome  
(Engel 6 
months) 

Other 
tissue 
diagnoses 

Spike 
Frequency 

Microarray 
Characteristics 

(% genes) 
Low High Increase Decrease Total 

1 NA NA 10 F Temporal PO NA DG, AI, NLP 1 116 7.6 9.2 16.8 
2 SG 9 11 F Frontal BSH NA H 0 5 2.6 5 7.5 
3 ES, PC 0.4 3 F Parietal PE I WG, SupH 66 141 6.2 4.2 10.3 
4 ES 0.5 3 F Temporal BGW I MG 56 212 4.9 5.4 10.2 
5 SG NA 7 F Frontal P, W I CD, MG 25 215 11.6 11.1 22.7 
6 ES 2 6 F Frontal TC, CD? I MG 26 124 16.5 15 31.5 
7 ES 0.5 8 M Parietal NA III MG 3 172 10.2 9.8 19.9 
8 PC, SG 0 16 M Temporal PO I DG 44 176 6.9 10.6 17.5 
9 SG 6 11 F Frontal Normal I MCD 2 66 4.8 4.1 8.9 
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high and low spiking electrodes for each patient were identified and analyzed using both 

microarray and HR-MAS 1H MRS at 11.7T. For the purposes of this study, low spiking 

electrodes were considered internal controls for each patient, effectively controlling for within-

subject tissue variability (Loeb, 2010). All tissue regions selected for this study were free of 

apparent pathological changes and surgical hemorrhage based on gross examination and 

histology.  Histological tissue studies were done as described in our previous study (Dachet et 

al., 2015). 

3.3.2 Microarray analysis and detection of differentially expressed genes 

For microarray studies, total RNA was isolated from pooled alternating strips of full-

thickness (layers I-VI) neocortical gray matter, helpful in averaging out small local differences.  

A quadruplicate, flip-dye experimental design, as described (Beaumont et al., 2012; Rakhade et 

al., 2005), was used for each pair of high and low spiking samples within every patient.  Briefly, 

labeled antisense RNAs were spin column purified and hybridized to human, genome-wide 60-

mer oligonucleotide arrays (Catalog #G411A, Agilent), in a two-color dye-swap fashion.  

Differentially expressed genes were identified with a two-step hierarchical linear mixed model, 

correcting for array, dye, patient, array-die interactions and within-patient effects.  Genes that 

had more than a 1.4-fold change between high and low spiking samples with a false discovery 

rate of < 0.01 were considered to be differentially expressed.  We identified 990 such 

differentially expressed genes from our samples obtained from 9 subjects. 

3.3.3 High resolution Magic Angle Spinning 1H MRS 

HR-MAS 1H MRS spectra were acquired from 2 mm punches obtained from the apical 

neocortical gray matter (layers I-III), for each pair of high and low spiking samples within every 

patient in triplicate, at minimum, while frozen on solid CO2.  Tissue samples that were larger in 
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size may have more than 3 replicates.  The median number replicates for low spiking tissue was 

4 with a range from 3 to 8 and the median number of replicates for high spiking tissue was 6 with 

a range from 3 to 9.  The frozen punches analyzed using HR-MAS 1H MRS on a 500 MHz 

(11.7T) Bruker Avance DRX-500 spectrometer equipped with a g-HR MAS 500 WB BL4 P-HD 

probe (Bruker BioSpin Corporation, Billerica, MA) as described by Ghoddoussi and colleagues 

(Ghoddoussi et al., 2010).  The samples were placed directly into a Bruker zirconium rotor 

containing 5µL phosphate buffer (pH = 7.4), D2O, trimethylsilyl-proprionate (TSP) as the 

internal chemical shift reference (0.00 ppm), and formate for phase correction (8.44 ppm).  The 

sample was maintained at 4°C and spun at 4.2 ± 0.002 kHz while positioned at 54.7° relative to 

the static magnetic field, B0.  Semi-automated and manual first and second order shimming was 

used to reduce field inhomogeneities.  A rotor-synchronized 1-D Carr-Purcell-Meiboom-Gill 

(CPMG) with [90°-(τ-180°-τ)n] pulse sequence was used to acquire tissue spectra (Cheng et al., 

1996).  To take advantage of CMPG ability to filter out signals from molecules with short T2 

relaxation values, such as large signals from fat (Mountford, MacKinnon, Delikatny, & Russell, 

1992), twelve echo pulses were applied (n = 12) with an inter-pulse delay (τ) of 150 µs for TE = 

3.6 ms (echo time) and TR = 6.21 s (repetition time).  All spectra were acquired at a spectral 

bandwidth of 7 kHz (14 ppm) with 128 averages for a total acquisition time of approximately 13 

min per sample.  A representative high quality sample spectrum is given in Figure 3.2. 
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Figure 3.2 Representative high quality HR-MAS 1H MRS spectrum of human brain performed 
on partial thickness neocortical sample (layers I-III).  LCModel fitted spectrum (red line) shows 
excellent correspondence with averaged raw signal (thin black line).  Abbreviations: free choline 
(Cho), creatine plus phosphocreatine (Cr+PCr), γ-aminobutyric acid (GABA), glutamine (Gln), 
glutamate (Glu), glycerophosphorylcholine (GPC), myo-inositol (m-Ins), lactate (Lac), 
macromolecules at 1.4 ppm (MM140), N-acetylaspartate (NAA), N-acetylaspartylglutamic acid 
(NAAG), phosphorylcholine (PCh), phosphorylethanol-amine (PE), taurine (Tau). 
 

3.3.4 1H MRS quantitation 

The raw 1H MRS spectra were analyzed using LCModel (Provencher, 1993) with a 

custom experimentally derived basis-set containing 27 individual neurochemical metabolite 

model spectra combined with simulated lipid and macromolecule signals.  The experimentally 

derived basis-set was obtained under identical experimental conditions as the tissue analysis.  A 

complete list of all the metabolites included for fitting is provided in Appendix A.  The 

concentrations of metabolites located between 1.0 to 4.5 ppm, a range containing the major 

Chemical Shift (ppm)
  4.6     4.4     4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0     1.8     1.6     1.4     1.2     1.0          
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resonances from all the metabolites of interest, were estimated using LCModel.  These 

concentrations were ultimately expressed as a normalized mole percent of total metabolites, 

allowing measurements to be relatively insensitive to changes in extracellular volume (Klunk, 

Xu, Panchalingam, McClure, & Pettegrew, 1994). LCModel’s estimated confidence of the fitted 

metabolite spectra (i.e. how well it matches the original data) is estimated using Cramér-Rao 

Lower Bounds (CRLB).  For this study, only metabolites with average CRLB values less than or 

equal to 10% were used for analysis.  

3.3.5 Tissue discrimination and clustering 

In order to get a general sense of whether or not there are detectable differences in 

metabolites between high and low spiking regions, a t-test was initially performed on all 14 

metabolites of interest to determine if significant differences exist between the metabolite in high 

and low spiking tissues.  More refined classification and discrimination of high and low spiking 

samples using the metabolite profiles of all the samples were performed using generalized 

estimating equation (GEE) logistic regression model with an exchangeable covariance matrix 

implemented in R with geepack (Højsgaard, Halekoh, & Yan, 2005; Team, 2014) to help account 

for within-subject variability, since the samples were measured in multiplicates.  Receiver 

Operating Characteristic (ROC) curves, as a measure of model performance, were calculated 

using pROC package, together with a bootstrap estimated 95% confidence interval of the model 

sensitivity (Robin et al., 2011).   

Because several metabolites were highly correlated (r > 0.8) with each other, principal 

components analysis (PCA) was initially used to address the underlying issue of 

multicollinearity.  Since the goal of our PCA analysis was to minimize multicollinearity, we 

chose to include the maximum number of components possible (i.e. 14 components) for our full 
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model GEE logistic regression, in order to make predictions on whether a particular tissue 

sample is high or low spiking. The appropriateness of using the varimax orthogonal rotation 

method of PCA is validated by both an adequate Kaiser-Meyer-Olkin measure of sampling 

accuracy (MSA = 0.84) as well as significant Bartlett’s test of sphericity, χ2(91) = 1109, p < 

.001, indicating that the data is appropriate for PCA analysis (Dziuban & Shirkey, 1974).  The 

resultant factor scores were used as predictors in our logistic regression model.  This resultant 

logistic regression model used a given sample’s measured metabolite profile to determine a 

predicted probability ( p̂ ) that the sample was a high spiking sample.  

The full 14 component model performed extremely well in discriminating high versus 

low spiking tissue with an ROC area under the curve (AUC) of 0.90, 95% CI [0.83, 0.96] (Figure 

3.3).  For comparison, the AUC for the diagonal line on the ROC is 0.50, and represents the 

performance of chance classification (i.e. random guessing).  A maximum accuracy of 83% 

along with 85% sensitivity and 81% specificity was achieved using cutoff threshold of 0.57, 

where all p̂  ≥ 0.57 would be considered “high spiking” while those below the cutoff would be 

considered “low spiking.”  Gender was not included as a covariate in the model due to the highly 

uneven distribution between female (n = 7) and male (n = 2) participants.  Effects of both region 

(based on electrode placement) and subject age were tested and determined to have insignificant 

effects on the model overall (χ2 (1) = 0.213), and hence were removed from all analyses to 

reduce over fitting.  The component playing a significant role (Wald p-values < 0.10) in 

discriminating high from low spiking samples were identified and from them, we then selected 

the key metabolite from each component demonstrating the highest loading factor from 

metabolites that showed loading factors of at least 0.80.  
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Figure 3.3 Logistic regression performed using the maximum 14 components obtained from 
principal components analysis demonstrates high sensitivity and specificity in discriminating 
high spiking tissue samples from low spiking tissue samples. A) Distribution of high and low 
spiking tissue samples (red and blue shading, respectively) and their predicted probabilities of 
being high spiking are illustrated in the histogram. B) Overall model performance is 
characterized by a receiver operating characteristic (ROC) area under the curve (AUC) of 0.90, 
indicating excellent discrimination between high and low spiking tissues.  Gray regions and 
horizontal error bars indicate the estimated 95% confidence intervals of sensitivity and 
specificity using non-parametric bootstrapping of 1000 samples 

 

To better understand the mechanisms behind the differences in metabolite expression, 

these metabolites of interest are used for additional correlational clustering studies in order to 

observe how changes in key metabolites can correspond to changes in gene expression and cell 

type distribution.  Pearson correlations between the 990 differentially expressed genes (described 

above) across the 18 high and low spiking samples obtained from our 9 subjects and their 

corresponding mean metabolite concentrations for each sample were calculated (Dachet et al., 

2015).  Linkages between two genes were created when Pearson correlations were ≥ 0.70.  This 

cutoff is also consistent with a false discovery rate (FDR) of < 0.07 (Benjamini & Hochberg, 

1995).  Clusters were further analyzed using a combination of ConsensusPathDB (Kamburov, 
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Stelzl, Lehrach, & Herwig, 2013) and primary literature searches for functional and pathway 

enrichment.  For enriched pathways proposed by ConsensusPathDB, a cutoff threshold of FDR 

adjusted p < 0.05 was used to selected potentially significant pathways associated with each 

metabolite-gene clusters.  Additional associations between metabolites and putative cell types are 

explored using Pearson correlation based hierarchical clustering using the average linkage 

method.  Cluster relationships are further characterized using the actual Pearson correlations 

themselves, where Pearson correlations ≥ 0.70 (FDR adjusted p < 0.05) are considered 

statistically significant. 

3.4 Results 

Overall, the acquired 1H MRS signals were of very high quality.  The mean signal to 

noise ratio (SNR) was estimated to be 34.3 ± 8.41 (mean ± s.d) by LCModel.  A total of 14 

metabolites with mean CRLB of less than or equal to 10% were used for analysis.  They were: 

choline (Cho), glycerophosphorylcholine (GPC), γ-aminobutyric acid (GABA), glutamine (Gln), 

glutamate (Glu), myo-inositol (m-Ins), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartyl 

glutamic acid (NAAG), phosphorylcholine (PCh), phosphorylethanolamine (PE), taurine (Tau), 

simulated macromolecule at resonance position 1.40 ppm (MM140) and creatine plus 

phosphocreatine (Cr+PCr). 

Mean values for the 14 metabolites in high spiking and low spiking tissue samples are 

summarized in Table 3.2.  Statistically significant (p < 0.05) differences between high and low 

spiking tissues based on Student’s t-tests were found in 4 of 14 metabolites, namely Cho, PCh, 

Lac, and PE.  All were decreased in high spiking tissue.   
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Table 3.2 Means and standard errors (SE) of key metabolites measured from tissue samples of 
high and low spiking regions. Statistically significant differences were found between the high 
and low spiking tissue samples in 4 out of 14 metabolites (in bold) based on two-sample t-tests.  
All metabolites are normalized to the total fitted signals and expressed as percent total signal.  
Percent signal changes in high spiking tissue samples relative to low spiking tissue are also 
indicated for each metabolite. (* p < 0.05, ** p < 0.01, *** p < 0.001, uncorrected) 

 

Further analysis of all 14 metabolites using a combination of PCA and GEE (Liang & 

Zeger, 1986) based logistic regression yielded a short list of 8 potentially important metabolites.  

Of these, 6 were identified to make significant contributions (Wald p < 0.05) in differentiating 

high versus low spiking samples (Figure 3.4).  They were: Cho, Cr+PCr, GPC, m-Ins, Lac, and 

NAAG (Figure 3.4B and Table 3.3).  Our logistic regression model performed well, with a ROC 

AUC of 0.88, 95% CI [0.81, 0.95].  Our optimal accuracy in classifying high- versus low-spiking 

samples using these metabolites was 82% with a sensitivity of 85% and specificity 79% (Figure 

3.4C).  In summary, this metabolomic signature presents a highly sensitive and specific new way 

to differentiate epileptic brain regions from their non-epileptic counterparts and provides a 

potential approach to non-invasively “visualize” epileptic brain regions clinically using 1H MRS. 

Metabolite Low Spiking High Spiking Percent  
Change 

t-Test 

    Mean (SE) Mean (SE) (p, 2-tailed) 

* Cho 0.61 (0.04) 0.50 (0.02) -19% .01 

 Cr+PCr 8.55 (0.24) 8.36 (0.21) -2% .56 

 GABA 3.13 (0.11) 3.10 (0.09) -1% .79 

 Gln 3.75 (0.25) 3.53 (0.15) -6% .44 

 Glu 7.03 (0.19) 6.81 (0.21) -3% .44 

 GPC 0.58 (0.03) 0.58 (0.03) 0% .98 

 m-Ins 5.11 (0.22) 4.63 (0.15) -9% .07 

*** Lac 15.06 (0.38) 12.98 (0.48) -14% < 0.001 

 MM140 28.80 (1.62) 32.17 (1.42) 12% .12 

 NAA 5.40 (0.20) 5.21 (0.18) -3% .49 

 NAAG 0.99 (0.03) 1.00 (0.03) 1% .78 

*** PCh 0.93 (0.04) 0.78 (0.03) -16% < 0.01 

* PE 2.36 (0.09) 2.11 (0.08) -11% .03 

  Tau 2.02 (0.09) 2.03 (0.08) 1% .90 
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Figure 3.4 Logistic regression using 8 metabolites demonstrated high sensitivity and specificity 
in discriminating high spiking tissue samples from low spiking tissue samples. A) Distribution of 
high and low spiking tissue samples (red and blue shading, respectively) and their predicted 
probabilities of being high spiking are illustrated in the histogram.  B) Model coefficients used 
for predicting high and low spiking tissue.  Metabolites with significant (p < 0.05) contributions 
to the model are bolded.  C) Overall model performance is characterized by a receiver operating 
characteristic (ROC) area under the curve (AUC) of 0.88, indicating excellent discrimination 
between high and low spiking tissues.  Gray regions and horizontal error bars indicate the 
estimated 95% confidence intervals of sensitivity and specificity using non-parametric 
bootstrapping of 1000 samples. 
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Table 3.3 Logistic regression parameter estimates and odds ratios of metabolites included in 
the final predictive model.  Significant metabolite predictors are indicated in bold and are in 
good agreement with results from the two-sample t-tests.  Exponentiation of parameter 
estimates gives their corresponding odds ratios (OR).  An OR greater than 1 indicates that for a 
given unit increase in the specified metabolite within a sample, there is also an increase in the 
probability of the tissue sample being high spiking.  In contrast, OR less than 1 indicates 
decrease in the likelihood that a tissue sample is high spiking for a unit increase in the specified 
metabolite.  Adjusted OR are odds ratios calculated for every 0.1 increment of a metabolite 
instead of the standard 1.0 increment used to calculated standard OR.  It is important to note 
that the odds ratios are multiplied by for every unit increment in the predictor (i.e. metabolite 
levels) due to the exponential nature of logistic regression.  For example, in the case of choline, 
a 0.20 unit increase in choline reduced the odds of the tissue being high spiking by a factor 0.26 
(i.e. 0.51 × 0.51 = 0.26) (* p < .05, ** p < .01, *** p < .001) 

 

 In order to better understand the significance of these findings, we performed an 

integrative analysis of metabolomic, transcriptional, and histological measures from each of the 

18 brain samples, as outlined in Figure 3.1.  Two major clusters of gene-metabolite interactions 

emerged, centering on changes in energy state, with a down regulation of lactate and 

upregulation of Cr+PCr (Figure 3.5).  Down-regulated lactate clustered with a group of genes 

associated with G-protein coupled receptor (GPCR) signaling and angiogenesis pathways (FDR 

adjusted p < 0.01), specifically VEGFA, FLT1, RGS1, RGS2, RHOU, GNA13, and TFRC, all of 

which were up-regulated in high-spiking brain regions.  Also notable from the cluster was the 

upregulation of multiple genes associated with ubiquitination, highly suggestive of the 

preferential involvement of the ubiquitin-proteasome pathway (UPP) in high spiking areas. 

Metabolite Estimate (SE) SE 
95% CI for Odds Ratio Adjusted 

OR 
Wald 

p-value OR Lower Upper 

** (Intercept) 0.41 (0.14) 0.13 1.50 1.15 1.97 1.04 < 0.01 

*** Cho -6.83 (2.06) 1.83 1.08E-03 1.92E-05 6.06E-02 0.51 < 0.001 
*** Cr+PCr 1.13 (0.22) 0.34 3.09 2.02 4.72 1.12 < 0.001 
** GPC 4.01 (1.45) 1.39 55.3 3.20 9.56E+02 1.49 < 0.01 
* myo-Ins -0.37 (0.17) 0.16 0.69 0.50 0.97 0.96 .03 

*** Lac -0.74 (0.17) 0.17 0.48 0.34 0.67 0.93 < 0.001 
** NAAG 5.75 (2.22) 0.09 315 4.08 2.43E+04 1.78 < 0.01 

 PCh -0.67 (0.91) 2.09 0.51CV 0.09 3.06 0.94 .46 

  PE -1.02 (0.76) 0.81 0.36 0.08 1.59 0.90 .18 
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Using a larger set of brain samples, some of which were included here, we developed a 

novel clustering approach to predict cell-type specific changes in regions of high versus low 

epileptic spiking, creating what we called a “cellular interactome” (Dachet et al., 2015).  In that 

study, we showed consistent differences in high spiking tissues that included increases in blood 

vessel density, inflammatory microglia, and millimeter-sized microlesions in deeper cortical 

layers.  These microlesions contain a unique population of neurons with reduced NeuN staining 

(Type 1 Neurons) and increased microglia (Type 1 Microglia).  Combining the cellular 

interactome with the present metabolomic dataset, we found significant correlations between 

reduced lactate and Neuron 1 (r = 0.76; p < 0.05) and increased Cr+PCr and Microglia 1 (r = 

0.72; p < 0.05) (Figure 3.6A-B).  Both cell populations correlated with the degree of epileptic 

activity and the number of microlesions (Dachet et al., 2015).  Histological examination of the 

specific tissue samples used here consistently showed the increased presence of microlesions and 

increased vascular density in high versus low spiking regions  (Figure 3.6C). Taken together the 

combined genomic-metabolomic and cellular interactome suggests the existence of a unique 

signature linked to altered tissue energy demand and consumption in high spiking brain tissue 

that could serve as a clinically translatable, non-invasive biomarker for the functional and 

structural abnormalities that underlie human neocortical epilepsy. 
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Figure 3.5 Correlational clustering between predictor metabolites and differentially expressed 
genes in high spiking tissues demonstrate a large cluster of up-regulated genes around lactate, a 
negative predictor of high spiking.  Upregulated genes are indicated in green and downregulated 
genes are indicated in red.  Pathway enrichment analyses indicate many of these differentially 
expressed genes to be involved in G-protein signaling, angiogenesis as well as ubiquitination.  
Relevant genes in the lactate cluster include: VEGFA, FLT1, RGS1, RGS2, RHOU, GNA13, 
PK3CA, and TFRC. 
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Figure 3.6 A) Hierarchical clustering between metabolites and cell types show significant 
associations between lactate and Neuron Type 1 (Neuron 1) and also between Cr+PCr and 
Microglia Type 1 (Microglia 1).  The red line indicates significance threshold of correlation, 
where paired relationships to the right of the line are significant.  B) Normalized expression over 
all 18 samples between Lactate and Neuron Type 1 and between Cr+PCr and the cluster 
consisting of Microglia Type 1 and several other cell correlational clusters show stronger 
clustering between lactate, Cr+PCr and several cell types with the correlations between 
Microglia Type 1 and Neuron Type 3 being significant (solid lines).  Other correlations in the 
same cluster, while not statistically significant, are also shown (dashed lines). C) Representative 
histology from Patient 1 demonstrating increased blood vessels and the presence of microlesions 
(outlined) showing reduced NeuN staining in high spiking tissue compared to its low spiking 
counterpart. 
 

3.5 Discussion 

Epilepsy has been a challenging disease to diagnose and develop novel treatments for due 

to limitations in non-invasive methods to identify epileptic brain regions.  Scalp EEG recordings 

can reliably detect epileptic discharges occupying at least 10 cm2 of brain tissue (Tao, Ray, 

Hawes-Ebersole, & Ebersole, 2005).  1H MRS, with its ability to simultaneously measure 

multiple metabolites, offers a potentially powerful means to detect epileptic brain regions.  While 
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previous 1H MRS epilepsy studies have focused on epilepsy associated differences in individual 

metabolites or the ratios of a few metabolites, changes in the entire metabolite profile, as 

demonstrated by our findings here, could be informative for the development of high resolution 

brain maps of epileptic activities.  The unique metabolomic-genomic differences discovered here 

for high-spiking epileptic human brain suggest that high spiking regions of the neocortex have a 

unique metabolic and energetic signature that could enable non-invasive 1H MRS approaches to 

differentiate these brain regions from their normal counterparts.  

The systems biology approach applied here linking human brain electrical activity to 

metabolomics, genomics, and cellular/histological changes offers a powerful, unbiased approach 

to discover and simultaneously validate biomarkers of human epileptic brain.  Hierarchical 

clustering between metabolites and cellular changes, as defined by their transcriptional profile, 

showed a close parallel between the down-regulation of both lactate and Type 1 Neurons.  This 

was validated through the identification of reduced NeuN staining within microlesions that we 

found to be present in high numbers in human cortical epileptic brain regions (Dachet et al., 

2015).  Similarly, the upregulation of Cr+PCr correlated with an increase of other neurons and 

Type 1 Microglia.  Interestingly, microglia have also been shown to express high levels of PCr 

(de Gannes, Merle, Canioni, & Voisin, 1998), which may help explain Cr+PCr as a positive 

predictor of high spiking activity. 

Exactly why lactate is consistently downregulated in these brain regions is not clear.  

This may be due to unmet energy demands due to frequent IEDs leading to lactate consumption 

as an alternative energy source.  While one would expect surgically excised tissue to become 

hypoxic and increase lactate levels, our unique study design using multiple paired samplings of 

both high and low spiking samples from within the same patient should control for this.  Recent 
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work has shown that inhibition of lactate dehydrogenase, the key enzyme that coverts lactate to 

pyruvate for use in the TCA cycle, can cause hyperpolarization in neurons and suppress 

epileptiform activity (Sada, Lee, Katsu, Otsuki, & Inoue, 2015).  The strong correlational 

relationship between lactate and the cluster of genes enriched in angiogenesis is further validated 

by histological evidence of blood vessel proliferation in high spiking samples and may be a 

compensatory reaction to higher energy demands (Dachet et al., 2015).  Selective involvement of 

angiogenesis factors in high spiking regions also hints at the potential role of anti-angiogenesis 

therapies as a potential mean to combat epileptogenesis.  Indeed, Morin-Brueau and colleagues 

have recently carried out studies on the interaction between epileptiform activity and 

angiogenesis in rodent hippocampal cultures (Morin-Brureau et al., 2011).  The results of their 

studies suggest that that targeted inhibitors of one or more downstream pathways associated with 

VEGF could be used potentially to treat epilepsy (Morin-Brureau et al., 2011; Morin-Brureau, 

Rigau, & Lerner-Natoli, 2012).  More over, there is evidence for disrupted blood brain barrier 

(BBB) associated with VEGF overexpression in patients with intractable temporal lobe 

epilepsies (Morin-Brureau et al., 2011; Rigau et al., 2007), potentially allowing for the use of 

novel therapeutic agents that would have limited penetration through otherwise intact BBBs. 

Contrary to what is most often reported in literature where NAA ratios with creatine or 

choline moieties are typically decreased in epileptic regions (Bernasconi et al., 2002; Breiter et 

al., 1994; Cendes et al., 1997b; Connelly, 1997; Matthews et al., 1990), NAA was not a 

significant predictor of high versus low spiking in our regression model.  Levels of NAA 

between high and low spiking tissue samples were also not significantly different based on the 

results of our two-sample t-test.  We suspect localization and partial volume effects to be major 

causes of this discrepancy.  While vast majority of studies in literature specifically studied the 
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hippocampus or portions of the temporal lobe, we were very precise about using only the 

superficial layers of the neocortex for our HR-MAS 1H MRS study, given that was where most 

of the transcriptional changes associated with MAPK/CREB activation were seen.  Furthermore, 

1H MRS studies of neocortical epilepsy generally study metabolite differences between various 

regions of the brain where the ROIs typically include mixtures of both gray and white matter.  

Given the role that NAA is also known to play in myelin lipid synthesis (Chakraborty, Mekala, 

Yahya, Wu, & Ledeen, 2001; Mehta & Namboodiri, 1995), contributions of white matter NAA 

to the signal could lead to very different findings compared to NAA signals derived specifically 

from gray matter.  

A key feature of these epileptic brain regions is the presence of microlesions that show 

dramatic, focal reductions in synaptic connectivity (Dachet et al., 2015). Consistently, the 

involvement of both choline and GPC in our predictive model suggests heightened cell 

membrane turnover in high spiking tissue.  GPC and free fatty acids (FFA) are key breakdown 

products of phosphatidylcholine (Podo, 1999), a major membrane constituent.  This breakdown 

process can be initiated under hypoxic conditions with the calcium-dependent activation of 

phospholipase A2 (PLA2), which is also responsible for the release of arachidonic acid, a potent 

inflammatory intermediate (Farooqui, Yang, Rosenberger, & Horrocks, 2002).  Furthermore, in 

recurrent seizures, cortical oxygenation level has been show to be inversely related to FFA 

release (Visioli, Rihn, Rodriguez de Turco, Kreisman, & Bazan, 1993).  Choline, also a key 

component in membrane turnover, is active both as a membrane precursor and as a membrane 

breakdown product from GPC degradation.  Given the comparative lack of free choline despite a 

relative increase in GPC in high spiking tissue, we suspect a re-distribution of choline into 

various anabolic pathways, such as regeneration of phosphatidylcholine for new membrane 
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synthesis or acetylcholine synthesis.  In fact, elevated acetylcholine receptor activation is known 

to increase seizure potential (Priel & Albuquerque, 2002).  Pilocarpine, an acetylcholine receptor 

agonist, is a relatively common agent used to generate seizures in animal models (Cavalheiro et 

al., 1991; Pitkänen, Schwartzkroin, & Moshé, 2005). 

The ability of metabolite profiles to predict accurately whether or not a given tissue 

sample is high or low spiking is remarkable and is a clear reflection of the distinct metabolic 

environments associated with persistent epileptiform activity.  The metabolites outlined in our 

predictive model demonstrate that 1H MRS is capable of accurately distinguishing epileptic from 

non-epileptic regions.  With further technical refinement, these metabolites may be adapted for 

clinical use and become an invaluable tool in our efforts to better understand and treat epilepsy 

and the underlying processes leading to the disorder. 
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CHAPTER 4: LONGITUDINAL METABOLITE CHANGES IN A MRI-COMPATIBLE 
ANIMAL MODEL OF IED AND EPILEPTOGENESIS 

4.1 Summary 

The clinical nature of epilepsy is such that the vast majority of patients presenting to a 

clinician will have already suffered at least one seizure episode, and are well on their way toward 

having an established epileptic condition.  This inability to identify patients prior to seizure onset 

makes the use of a molecularly accurate animal model of epileptiform activity invaluable for the 

study of IEDs during epileptogenesis.  Here, we developed a MRI-compatible EEG monitoring 

system in a rat animal model of IEDs and seizure development to study longitudinal metabolite 

changes in the rat cortex using 1H MRS at 7T.  The observed metabolite changes in this study are 

suggestive of energy imbalance in the anterior regions of the rat brain.  Involvement of Cr+PCr 

and GPC+PCh recapitulates similar findings in our ex vivo human study presented in Chapter 2.  

These results provide evidence that 1H MRS can be a sensitive technique for detecting metabolite 

changes associated with epileptogenesis. 

4.2 Introduction 

As discussed in Chapter 1, the exact relationship between IEDs and seizures is not well 

understood.  IEDs in the form of interictal spiking activity on electrophysiology are frequently 

used to assist in the identification of seizure onset regions and the removal of both high spiking 

and seizure onset regions tends to yield the best treatment outcome (Asano et al., 2003; Bautista 

et al., 1999; Kanazawa et al., 1996; Lee et al., 2014). They also occur more frequently than 

seizure episodes, potentially making them a more sensitive marker of neuronal and metabolic 

dysfunction or of underlying disease progression than seizure frequency.  Animal studies have 

shown that interictal activity may precede the development of seizures with a positive correlation 

between the frequency of spikes and rate at which epilepsy tend to develop in these animal, 
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making them a potential biomarker of seizure development (White et al., 2010).  Here, we plan 

to study the temporal and spatial associations between IED frequency and metabolite changes as 

detected by 1H MRS at 7T in a longitudinal rat model of epileptogenesis with spontaneous and 

persistent IEDs.  This study will also directly assess whether there are metabolite profile 

differences between animals treated with tetanus toxin and those receiving vehicle injections.  

This study can also serve as an important in vivo validation of our previous ex vivo human tissue 

study (Chapter 3).  Consistent metabolite changes common to both studies could indicate 

biomarkers that may be used to detect both established epilepsy and epileptogenesis. 

The identification of metabolite biomarkers ex vivo in epilepsy patients (Chapter 3) is an 

important first step in the development of non-invasive biomarker for epilepsy in humans.  

However, the question remains whether these metabolite biomarkers may be used to identify 

metabolite correlates of IEDs or ideally epileptogenesis in vulnerable populations prior to the 

onset of established epilepsy.  Animal models may be an invaluable tool to study these 

metabolite changes over time and their underlying biochemical changes.  The ideal animal model 

would closely resemble epilepsy in humans with a non-symptomatic prodromal phase followed 

by chronic and spontaneously generated seizure episodes and recognizable paroxysmal IEDs 

even in the absence of concomitant seizures.  Treatments and methods used to induce 

epileptogenesis should not result in significant neuronal toxicity or cell death (Barkmeier & 

Loeb, 2009). 

Many models of epilepsy exist and they may be classified into two categories: 1) acute 

versus chronic models and 2) hippocampal versus neocortical.  Acute models such as those using 

penicillin can induce IED and epilepsy like behavior in a matter of hours, and can be a good 

choice for studying behaviors associated with epilepsy or mechanisms associated with the spread 



www.manaraa.com

43 

 

of systemic seizures (Rubio, Rubio-Osornio, Retana-Márquez, Verónica Custodio, & Paz, 2010).  

Unfortunately, it is difficult to determine whether the mechanism underlying these acute changes 

are similar to the mechanisms underlying chronic changes seen in human epilepsy patients.  For 

this reason, chronic models, with their distinct latent period prior to the development of 

spontaneous seizures (Pitkänen et al., 2005), are preferred over acute models for studying 

epileptogenesis.  Most of the common chronic models for epilepsy such as kindling or systemic 

injections of pilocarpine or kainic acid, affect the limbic system in a manner that parallels human 

temporal lobe epilepsies more than neocortical epilepsies (Sarkisian, 2001), and frequently cause 

significant neuronal damage to the hippocampus.  Tetanus toxin and heavy metals such as zinc 

and cobalt are the two primary models used for modeling chronic neocortical epilepsies 

(Barkmeier & Loeb, 2009).  Of the two, only tetanus toxin does not cause extensive tissue and 

neuronal damage when directly applied to the cortex, which is an important for our studies since 

we are interested in identifying biomarkers that reflect the physiologic basis of epilepsy rather 

than tissue injury.  Tetanus toxin works by transiently inhibiting the release of GABA from 

inhibitory interneurons with a simultaneous increase in the release of excitatory 

neurotransmitters (Williamson, Fitzgerald, & Neale, 1992).  Injection of the toxin directly into 

the somatosensory cortex has been observed to primarily result in IEDs (Brener, Amitai, 

Jefferys, & Gutnick, 1991) with relatively infrequent seizures that develop over the course of 

days to weeks (Nilsen, Walker, & Cock, 2005) and can persist to upwards of 7 months (Brener et 

al., 1991).  For the purposes of our study, tetanus toxin offers the combination of features most 

suited for our longitudinal study of IED and epileptogenesis in a chronic setting with minimal 

neuronal damage. 

Further characterizations of the tetanus toxin rodent model by our laboratory revealed 
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many similarities to human epilepsy (Barkmeier et al., 2012).  In this model, IEDs were noted to 

appear within a few days after treatment and increases in frequency over time with few 

associated seizures.  Similar to human epilepsy (Beaumont et al., 2012), a similar pattern of 

activated CREB and induction of plasticity genes in layers II/III of the cortex was observed.  

Blocking of MAPK signaling using a selective MAPK inhibitor attenuated the layer II/III CREB 

activation and reduced frequency of observed IEDs without affecting seizures (Barkmeier et al., 

2012).  These findings suggest that this model can accurately recapitulate the molecular and 

electrophysiological features of epilepsy and may be a useful model for studying IED and its 

relation to epileptogenesis and may also be a good model system for testing efficacy of novel 

therapeutics. 

For this study, we use 1H MRS at 7T to longitudinally study the changes in metabolites 

over time in our tetanus toxin rat model.  Concurrent electrophysiology studies that provide 

information on IED frequency and progression over time is measured using an implantable MRI-

compatible intracranial EEG recording system developed for this animal model.  The main aim 

of this study is to identify both temporal and spatial changes in potential metabolite biomarkers 

associated with epilepsy development and how these metabolites may relate to IED activity in 

these animals.  Given the molecular similarities observed in this animal model and in human 

epilepsy, we hypothesize that we will identify changes in energy balance and synaptic plasticity, 

similar to what was found in our study of human epilepsy tissue ex vivo (Chapter 3).   

4.3 Methods 

4.3.1 Rodent surgery, tetanus toxin injection, and electrode implantation 

All studies were carried out on 4 month old male Sprague-Dawley rats (n = 16) split into 

3 groups: tetanus injected treatment group (TET; n = 7) and vehicle injected positive control 
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group (CTL; n = 5) and normally 

developing controls with no surgery 

(NCT; n = 2). Each rat was im-

planted with 5 MRI-compatible sil-

ver recording electrodes: 2 on each 

hemisphere plus 1 reference elec-

trode over the nasal sinus (Figure 

4.1).  The selection of electrode material was given extra consideration due to the strong mag-

netic environment the electrodes would be subjected to.  Silver was selected as the primary 

material of choice due to its malleability, ease of fabrication, biological inertness, is a 

diamagnetic material, and also has a relatively low susceptibility, a measure of how a particular 

material would distort its surrounding magnetic field ( χsilver = −24×10
6  compared to 

χstainless  steel = 3520 to 6700×106  and χcalcium = 21.7×10
6 ) (Schenck, 1996).  Each electrode is 

constructed from multi-stranded silver wires with PTFE coating (Medwire Corporation, Part 

#AG7/40T, Mount Vernon, NY) and soldered to a size 1-64 hand-tapped silver screw.  The silver 

recording screw is then chlorided in a saline bath using a pure silver anode with a 1.5 V battery 

source for 2 minutes (Ives, 2005) to create a Ag/AgCl electrode which, known to have improve 

recording characteristics compared to Ag electrodes (Geddes & Baker, 1967). 

One day prior to surgery, rats were placed on an initial dose of liquid acetaminophen in 

their drinking water (2 mg/mL of water).  General anesthesia was induced using ketamine (80 

mg/kg IP) and xyalzine (13 mg/kg IP) combination.  Once an adequate plane of anesthesia was 

confirmed by the absence of a toe pinch reflex, the incision area along the dorsal surface 

extending from the head to the upper torso of the animal, were shaved and cleaned with betadyne 

 

Figure 4.1 Four recording electrodes 
and one reference electrode were 
secured directly to the rat skull.  
Electrode channels are numbered 
numerically from anterior to 
posterior and left to right.  Electrode 
placements are indicated by closed 
circles and were based on distances 
from the bregma (Paxinos & Watson, 
2007).  Tetanus toxin was injected 
into the burr hole drilled for the 
placement of Channel 2 recording 
electrode (red closed circle).  

REF
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and ethanol.  Ophthalmic ointment and lidocaine gel were placed onto the eyes and ears, 

respectively, for protection prior to being placed on the stereotaxic frame.  Adequate plane of 

anesthesia was checked approximately every 5 minutes during surgery and an additional ½ dose 

of ketamine/xyalzine was administered when necessary to maintain anesthesia. 

 
Figure 4.2 Surgical implantation of recording electrodes and exteriorization of the connector. A) 
Drilled burr holes do not penetrate dura with the exception of the injection site where a Hamilton 
needle was stereotaxically advanced into the somatosensory cortex, through the dura.  Electrodes 
are then screwed directly into the skull after injection and secured with dental cement. B) EEG 
connector was exteriorized to the region between the animal’s shoulder blades to accommodate 
placement of the surface head coil during MR sessions. 
 

Once the skull had been adequately exposed, five holes were drilled (Figure 4.2A) 

through the full thickness of the skull without penetrating the dura.  The stereotactic injection is 

delivered into the left somatosensory cortex (AP -1 mm, L 3.5 mm relative to bregma, depth 1.5 

mm) (Paxinos & Watson, 2007).  TET animals received tetanus toxin (Sigma, Catalog #T3194; 1 

µL at 100 ng/µL in 0.01 M sodium phosphate) into the left somatosensory cortex while CTL 

animals received vehicle (1 µL 0.01 M sodium phosphate). Injections were made with a blunt 

tipped Hamilton syringe advanced 1.5 mm into the cortex over the course of 4 minutes and the 

needle was left in place for 10 minutes prior to retraction from the brain.  The bilateral recording 

electrodes (AP +4 mm, -1 mm , L 3.5 mm relative to bregma) were screwed directly onto the 
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skull and secured with dental cement.  The electrodes were exteriorized to back-mounted 

connectors (Plastics One Inc., Roanoke, VA) (Figure 4.2B) to accommodate surface coil 

placement during MR sessions while allowing the animal to maintain mobility during EEG 

recording sessions. 

All incisions were closed and secured with nylon sutures and triple antibiotic ointment 

(TAO) was applied. The entire surgical procedure typically required 30-45 minutes from 

anesthesia induction to transferring the animal from the stereotaxic frame to a recovery chamber 

with a suitable heating source.  They were injected with 10 mL of lactated ringer’s solution 

subcutaneously and left undisturbed until they have recovered from the anesthesia, at which 

point they would be transferred to animal housing facilities.  Liquid acetaminophen was provided 

in their drinking water (2 mg/mL of water) for a period of five days and TAO was applied daily 

for three days after surgery.  Sutures were removed approximately one to two weeks after 

surgery, when the incisions have healed adequately.  EEG recordings were made using Stellate 

Harmonie video EEG recording system sampling at 200 Hz every other day starting on day 7 

after surgery.  During recording, animals were placed into a clear-walled recording chamber for 

2-3 hours.  Recordings were typically done between 9 AM and 1 PM to minimize circadian 

rhythm effects.  

4.3.2 1H MRI/MRS Assessments 

Bi-weekly 1H MRI/MRS scans over 6 weeks were done on a 7 Tesla Bruker ClinScan using 

a 2-channel phased array receive-only surface coil.  For anesthesia induction, the animal was 

placed in a 1L induction chamber containing 2.0-4.0% isoflurane mixed with medical air 

connected to an isoflurane-scavenging filter.  Induction typically took 5-10 minutes and was 

considered complete when the animal exhibits loss of righting reflex along with loss of toe pinch 
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reflex.  The animal was then quickly transferred to the MR scanner and maintained on 

maintenance isoflurane (2% isoflurane mixed with medical air).  Adequate body temperature was 

also maintained for the duration of the scan using warm circulating water (37°C) and the 

animal’s core temperature was monitored between scan sequences, approximately every 10 to 15 

minutes using a fiber optic rectal probe.  A rapid drop in core temperature (> 1°C) or evidence of 

excessive motion on MR scans were signs of physiological stress and were causes for immediate 

removal of the animal from the scanning apparatus. 

 
Figure 4.3 Timeline of study.  Initial baseline scan (MRS (a)) occurred 4 days prior to surgery.  
Surgery was performed on day 0.  First EEG recording session typically took place on day 7 
depending on the animal’s recovery progress.  First MRS evaluation took place on day 10 (MRS 
(b)) and repeated every 2 weeks until end of study at day 38. 
 

Initial scout image followed high resolution axial, sagittal, and coronal T2-weighted images 

were collected to assist in voxel placement.  Major landmarks and voxel positions were observed 

and recorded to maximize the consistency of measurements between time points.  Single voxel 

spectroscopy of both water suppressed and fully relaxed water unsuppressed signal were 

collected using PRESS (Point Resolved Spectroscopy) with the following sequence parameters: 

TE = 14 ms, TR = 3500 ms, 256 averages, spectral bandwidth = 3500 Hz, 2048 points.  Each 

measurement was carried out in a 3.0 × 3.2 × 2.0 mm3 voxel, placed in the neocortex, adjacent to 

the location of a recording electrode of interest (Figure 4.6A).  1H MRS measurements were 

performed every two weeks starting with an initial baseline assessment at four days prior to 

surgery (Figure 4.3). 
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4.3.3 1H MRS quantitation 

Quantitation of raw 1H MRS was done using LCModel (Provencher, 1993) with a simulated 

TE = 14 ms basis set consisting of 17 individual metabolites along with 8 simulated 

macromolecule resonances.  Concentration of metabolites between 0.2 to 4.0 ppm were 

estimated, normalized to total tissue water obtained from unsuppressed water signal, and 

expressed in units of mmol/kgwet weight (Provencher, 2014).  The full list of metabolites used for 

fitting in this study is provided in Appendix A.  As described in Chapter 3, LCModel provides 

CRLB estimates as indicators of how confident the fitted metabolite spectra matches the original.  

For the purposes of this study only metabolites and their ratios with CRLB values less than or 

equal to 10% were retained for further analysis.  

4.3.4 IED quantification 

Final quantitation of IEDs were carried out in using an automated in-house Matlab (The 

MathWorks, Inc., Natick, Massachusetts, United States) script that was a modified version of an 

existing program (Barkmeier et al., 2011) with several key features added: 1) wavelet based de-

noising and signal fitting 2) Lowess spline baseline subtraction, and 3) multi-channel spike 

detection.  Conventional frequency filters, such as the Butterworth filter will typically introduce 

a phase shift in the time dependent signal, which if uncorrected for, can cause a distortion of the 

final waveform (Figure 4.4).  Unfortunately, most programs do not properly compensate for this 

phase shift, resulting in a distorted waveform such that true spikes may be shifted inappropriately 

out of phase and go unnoticed by the algorithm or noise may be shifted inappropriately to 

resemble a spike and be marked as a false-positive spike. Lowess spline baseline subtraction was 

implemented as a means of removing non-periodic slow moving changes in the baseline of the 

EEG signal frequently present in the reference montage (i.e. electrode signal minus reference 
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signal) and was used in the calculation of spike parameters such as peak base width and AUC.  

The original spike detection program only marked spikes in the channel with the highest 

amplitude without explicitly recording spike spread into nearby channels.  The added feature of 

multi-channel spike detection allowed us to determine the frequency and manner by which IEDs 

can spread through the cortex in the form of propagating spikes across electrodes. 

 
Figure 4.4 Wavelet based de-noising and waveform fitting. A) Conventional frequency filters, 
such as the Butterworth, can result in phase shifts in the time signal, leading to distortions that 
can be misinterpreted, as shown by the EEG trace labeled “Bandpass (1-35 Hz).”  Wavelet based 
de-noising does not suffer from this issue and is able to effectively eliminate noise and produce a 
clean “fit” of the signal (red overlay). B) Subtraction of the estimated baseline obtained (thin 
grey line running through the signal in the trace labeled “Raw Fit Baseline”) from using a 
Lowess fit eliminated low frequency noise and allowed for uniform characterization of spikes.  
Shaded rectangles indicate potential spikes that can be marked by the algorithm. 
 

 Prior to EEG analysis using the automated spike detection algorithm, periods of 

excessive motion by the animal, visually identifiable as large amplitude motion artifacts, were 

marked manually and the spike detection algorithm was programmed to skip those marked 

sections to speed up the detection process, as spike detection is impossible in the presence of 
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those artifacts.  Only segments of no motion 

were analyzed and the total duration of those 

motion-free segments were determined and 

used to calculate spike frequency.  Flow 

diagram of the steps involved in the spike 

detection algorithm is given in Figure 4.5. 

The WaveLab (Buckheit & Donoho, 

1995) Matlab toolbox was used carry out the 

wavelet de-noising using Battle-Lemaire 

wavelets.  Baseline fitting and subtraction was 

done using a Lowess toolbox (Burkey, 2008).  

Spike detections are carried out in each 

channel consecutively after wavelet de-

noising and baseline subtraction.  EEG data 

on each channel is split into a series of 10 minute blocks and processed in parallel using Matlab’s 

native Parallel Processing toolbox.  A high percentage of high amplitude noise in the block 

relative to the signal’s median absolute deviation, or MAD (MAD=median xi -median(xi )( ) ) 

was indicative of excessive noise, causing the whole block to be rejected.  Determination of a 

positive spike was based on three key criteria evaluated by the algorithm: 1) spike peak height 

must exceed twice the standard deviation (SD) of the signal relative to the baseline, 2) troughs of 

the spike must be at least 1 SD below the baseline, and 3) peaks must be between 50 ms to 200 

ms in duration.  Following spike detection, all identified spikes and their key features such as 

 
Figure 4.5 Flow chart of EEG data 
processing and spike detection 
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location, amplitude, and AUC were tabulated onto a data table in addition to being annotated 

directly onto a copy of the original EEG file for manual validation and visualization. 

4.3.5 Statistical analysis 

Several repeated measures mixed GLM regression models were used to analyze both 1H 

MRS and IED time series data.  Several mixed models were used to determine the effects of 

TIME (Weeks 1 through 5), TREATMENT (CTL and TET), and their interactions (Equations 

3.1–3.2) on several electrophysiological parameters including hourly spike count for single 

spikes, hourly spike count for spreading spikes, amplitude, and AUC.  Where appropriate, a log 

link function was used to analyze the IED time series data, which was represented in spike 

counts per hour (Poisson distribution) averaged into weekly bins.  Otherwise, an identity link 

function was used for non-count data. 

 

 
(Equations 3.1 – 3.2) 

 

To account for rat aging effects during the study, the time course data for the NCT 

animals were averaged at each time point and systematically subtracted from both of the TET 

and CTL groups for each metabolite.  A similar set of repeated measures mixed models were 

used to study the effect of TIME (time points: b, c, d), TREATMENT (CTL and TET), as well as 

their interactions on the various metabolites (Equations 3.3–3.4).  Time point “a” was not 

included in the model since it was an initial baseline measurement for the animals prior to any 

surgery or treatment.  A complementary verification analysis was also performed using original 

MRS data not adjusted for aging effects (i.e. average metabolite levels for NCT animals were not 
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subtracted from TET and CTL groups at each time point) to assess the robustness of the 

moderation effect that TREATMENT has on the metabolites over time. 

  

 

(Equations 3.3 – 3.4) 
 

All models were analyzed in R (Team, 2014) using lme4 package (Bates, Mächler, 

Bolker, & Walker, 2015).  Individual animals were included as the random effect to control for 

within-subject effects.  Analyses were stratified both for metabolite and region.  The threshold 

for significance was specified at p < 0.05.  Unless otherwise stated, all reported significance 

values were uncorrected for multiple comparisons.  In situations where multiple comparison 

corrections were implemented, a FDR adjusted p < 0.05 was considered significant. 

4.4 Results 

On average, each animal had approximately 45 minutes of motion-free EEG recordings 

per recording session that could be used for automated spike analysis.  Each animal had 3 to 4 

EEG recording sessions per week over the entire study duration.  The quality of the acquired 1H 

MRS signals is generally very high with clear separation of major metabolite peaks (Figure 

4.6B).  LCModel estimated SNR for the dataset was 11.2 ± 3.8 (mean ± s.d.).  Similar to our 

human tissue ex vivo study (Chapter 3), only metabolites with mean CRLB of less than or equal 

to 10% were used for analysis.  These metabolites were: Gln, Glu, m-Ins, NAA, Tau, simulated 

macromolecule at resonance position 0.9 ppm (MM09), GPC+PCh, Cr+PCr, NAA+NAAG, and 

Glu+Gln. 
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Figure 4.6 Single voxel placement and sample spectra A) Placement of voxels (green rectangle) 
in relation to recording electrode (yellow closed circles).  Location of tetanus or vehicle injection 
is indicated by open red circle.  The location of the axial slice shown in lower panel is indicated 
by white dashed line in the upper panel.  Dashed yellow rectangles indicate location of recording 
electrode in the skull.  B) Representative high quality spectra were obtained from voxel regions 1 
and 2 (upper and bottom panels) respectively. 
 

There was a significant decrease in spike rate over time in all of the regions (Figure 4.7A-

B), although effect of TREATMENT appears to only have a significant influence on the anterior 

electrodes, where CTL animals seem to be showing increased spiking activity.  The 

TREATMENT main effect seemed to have little influence in the posterior electrodes.  Channel 3 

was the only electrode to consistently show a moderating effect by TREATMENT, precipitating 

a faster rate of decline in spike counts in the CTL group compared to the TET group.  Comparing 

anterior channels (Channels 1, 3) directly to posterior channels (Channels 2, 4) revealed that 

anterior channels exhibited significantly more spikes and TREATMENT appeared to have a 

moderating effect on the rate of spike decrease.  Other measures of spike properties such as AUC 

and amplitude also showed a significant decrease over time irrespective of treatment group, with 
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the exception of Channel 3, where the CTL group showed higher amplitude and AUC and a 

faster decline in those measures over time compared to the TET group (Figure 4.7C-D). 

 
Figure 4.7 No clear difference in spiking over time between tetanus treated and control animals.  
All electrodes showed significant decreases over time in all 4 measures of interictal spiking: 
single spike hour count (A), spreading spike hourly count (B), amplitude (C), and AUC (D), with 
the right anterior electrodes (Channel 3) consistently showing a significant treatment effect in 
both the number of spikes and the rate of spike count decline. 
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Figure 4.8 Metabolite dynamics over time.  A) In general, CTL animals had fewer metabolites 
that changed significantly over time, with NAA+NAAG being the only metabolite to survive 
multiple comparison correction.  B) TET animals had 7 metabolites that changed significantly 
over the study period.  Most of the metabolite changes were observed in the anterior half of the 
rat brain.  C) Glu, Tau, GPC+PCh were the only metabolites that were significantly moderated 
by the effect of TREATMENT over the study period, with Gln being the only metabolite to 
survive multiple comparison correction.  The changes in Cr+PCr also appear to be affected by 
treatment group, although the effect was not statistically significant (p < 0.07).  D) MRI 
localization of rat brain with voxel placement for reference has following regional designations: 
voxel 1 (left anterior), voxel 2 (left posterior), voxel 3 (right anterior), voxel 4 (right posterior). 
Arrows in panels A-C indicate direction of metabolite difference or rate of change in TET 
animals relative to CTL animals. 
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Figure 4.9 Changes in several metabolites over the study period are moderated by treatment 
group.  Several metabolites in the TET group are observed to increase significantly over time 
while levels in the CTL group remained steady within the left anterior region: Tau (A), GPC (B). 
Cr+PCr also shows a similar pattern of increase, but the rate of change did not reach statistical 
significance at the specified cutoff.  Gln levels in TET group significantly decreased over time 
while CTL group also remained unchanged (D).  Metabolite concentrations in mmol/kgwet weight 

  
were normalized to tissue water and expressed as the difference from mean metabolite levels for 
NCT animals at each corresponding time point.  Reported significance values are unadjusted for 
multiple comparisons. N.S. indicates p > 0.05. 

 

Metabolite expression profiles over time were very different between our CTL and TET 

groups (Figures 4.8-4.9).  Comparing the metabolite profiles between the two groups directly, 

the TET group was much more dynamic than CTL in that 7 different metabolites or their 

combinations were noted to have significant changes over time in the TET group (Figure 4.8B) 

while only a single metabolite, NAA+NAAG, was noted to be significantly increased over the 
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study period in the CTL group (Figure 4.8A).  It is interesting to note that the majority of 

dynamic metabolites were observed in the anterior regions of the brain, where the spike counts 

were also persistently higher.  

Several significant TIME×TREATMENT interactions were also noted for several 

metabolites in the anterior half of the rat brain (Figure 4.8C).  The TET group was more likely to 

see progressive increases in Tau and GPC+PCh in the left anterior regions of the rat brain, while 

the CTL group was more likely to remain unchanged.  We also observed a similar behavior with 

respect to Cr+PCr, although the interaction did not reach statistical significance (p < 0.07).  A 

significant decline in Gln over time in the TET group compared to an unchanged CTL group was 

also noted in the right anterior region of the rat brain (Figure 4.9).  These findings were 

replicated in our verification analysis using MRS data unadjusted for aging, which similarly 

showed a preferential decrease in Gln (right anterior region; p < 0.001; FDR adjusted p < 0.01) 

and preferential increases in Tau (p < 0.01), GPC+PCh (p < 0.05), and Cr+PCr (p < 0.05) in the 

left anterior region of TET animals compared to CTL animals. 

4.5 Discussion 

The natural extension of our human tissue ex vivo study is to determine if similar 

metabolite changes may be visualized in our rat model longitudinally.  Tracking the 

electrophysiological changes in these animals over the study period becomes extremely 

important, as spontaneous IEDs generally have no associated physical manifestations that could 

be easily observed (Gibbs, 1936).  The major challenge of this study was to design a set of MR 

compatible EEG electrodes capable of recording signals for a minimum of five weeks.  In many 

respects, this study was just as much of a test for the design of a durable, MR compatible, long 
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term intracranial EEG recording method as it was for identifying relevant metabolite biomarkers 

of epilepsy development. 

While the existing non-MR compatible recording setup used by our laboratory has been 

able to record a progressive increase in IED frequency in tetanus treated animals over the course 

of several weeks (Barkmeier et al., 2012), this study was unable to replicate those findings.  

However, the electrophysiology obtained from this study does implicate several major 

contributing factors that could have led to such different results and point to changes that may be 

made to improve the procedure in future designs. 

First, the progressive attenuation of signal amplitude over time, likely due to oxidation of 

the electrode tip, with the most severe attenuation seen after the first three weeks of recording, 

suggests that silver electrodes may not be appropriate for the long term application necessary 

here.  While long term EEG electrodes using silver had been developed for clinical environments 

and tested successfully over the duration of several days (Ives, 2005), little information was 

available on how similarly implanted electrodes would perform over the course of several weeks 

in a biological system.  Results from our study indicate that recording sensitivity was severely 

attenuated after 2 to 3 weeks post-implantation.  Other MR compatible materials such as carbon 

fiber, gold, or platinum-iridium alloys (Jupp, Williams, Tesiram, Vosmansky, & O'Brien, 2006; 

Mirsattari, Sharpe, & Young, 2004) should be considered for future studies. 

Second, the exteriorization of the recording connector to the scapular region, while 

purposefully done to accommodate the MR surface coil placement above the animal’s head, also 

made the recordings much more sensitive to environmental noise as extra lengths of wires had to 

run subcutaneously from where the electrodes were secured on the skull to the connector at the 

scapula.  The introduction of extra environmental noise lead to exclusion of a significant portion 
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of the EEG recording (inter-quartile range: 30% to 86% exclusion) and also increased likelihood 

performance errors by the spike detection algorithm.  A better approach perhaps would be to 

customize the surface coil architecture to accommodate the design of the EEG connector (Van 

Audekerkea, Peeters, Verhoye, Sijbers, & Van der Linden, 2000), which ideally would have 

been secured directly onto the cranium. 

Finally, 1H MRS places a great demand on the homogeneity of the magnetic field in order 

to produce excellent spectral resolution.  Introduction of any foreign object or material will cause 

a distortion in magnetic field, and the degree of distortion will depend heavily on the properties 

of the material being introduced.  Depending on the research question being emphasized and 

whether or not the end goal is to detect sensitive metabolite biomarkers, an argument could be 

made to split the animal model into two parallel cohorts.  One cohort for performing standard 

EEG electrophysiology with and without tetanus toxin injections and a separate cohort with no 

electrodes implanted used specifically for 1H MRS studies, also with and without tetanus toxin 

injections.  Data collected from one cohort may be used to inform the other, and may provide a 

more complete picture without compromising the quality of 1H MRS or EEG recordings. 

Nevertheless, despite the concerns raised here regarding the electrophysiology results, it 

is still interesting to note that within the first 2-3 three weeks, when the signal attenuation was 

not as severe, the CTL group still consistently demonstrated higher number of spike along with 

larger variance as well compared to the TET group (Figure 4.7A-B). While this observation 

should be interpreted with caution in the absence of additional validation studies, it could be 

indicative of the surgical procedure itself is producing electrophysiological change in the rat 

brain and the treatment with or without tetanus toxin acts as a potent modifier to how the rat 

brain recovers from the insult.  More studies that directly compare the surgery procedure with 
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and without vehicle injection would be needed to truly determine the effect that the procedure 

itself has on the electrophysiology. 

While we were not able to replicate the electrophysiology with our new approach, we 

may still interpret the 1H MRS metabolite data in context of the known IED behavior associated 

with this animal model, which is progressive and sustained increase in IED frequency over time 

(Barkmeier et al., 2012).  The dynamic changes in metabolite levels over the course of the study 

period in the TET group were impressive.  A disproportionate number of these metabolite 

changes were found in the anterior portions of the brain, coinciding with increased spiking 

activity noted in the anterior electrodes relative to the posterior electrodes.  This anterior 

dominant distribution of both significant metabolite changes and elevated spiking activity points 

to a potential link between these two phenomena and may reflect downstream changes associated 

with the upregulation of various plasticity markers noted by Barkmeier and colleagues 

(Barkmeier et al., 2012) in this animal model. 

At 4 months of age at the beginning of the study, these rats are well beyond their early 

development phases and would generally be considered equivalent to humans at approximately 

30 to 40 years of age (Sengupta, 2013).  We further attempted to account for aging changes by 

subtracting metabolite changes observed in a typically developing non-surgical cohort over the 

same study period from the metabolite values of our treatment groups.  It is, therefore, unlikely 

that these metabolite changes are caused by developmental growth, maturation, or aging effects.  

For example, taurine, an important modulator of synaptic plasticity (Flint, Liu, & Kriegstein, 

1998), is found in high abundance in early brain development and decreases during development 

to adult age (Tkáč, Rao, Georgieff, & Gruetter, 2003).  However, here, we observe a significant 

increase in taurine over time in the TET group, which may reflect its role as a neuromodulator 
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and also potentially as a neuroprotectant against glutamate-induced neuronal excitotoxicity (Wu 

et al., 2005), possibly in response to excessive tissue hyperexcitability associated with 

epileptogenic activity.  The subtraction of NCT metabolite changes over time from the treatment 

groups only yielded a more extensive list of metabolites that changed significantly over time, 

particularly in the TET cohort, but the metabolites significantly moderated by treatment group 

membership (i.e. Gln, Tau, GPC+PCh, Cr+PCr) was quite robust and remained unchanged even 

without subtraction of NCT group measurements from the measurements of TET and CTL 

groups. 

Also in the anterior regions of the rat brain, several metabolites showed different rates of 

change over time moderated by the treatment group membership.  The only metabolite to survive 

FDR multiple comparison correction for this moderation effect by treatment group was 

glutamine in the anterior right region of the rat brain.  Glutamine levels tended to decrease over 

time after an initial rise after surgical manipulation in TET animals while levels in CTL remain 

relatively unchanged.  Glutamine is converted from glutamate in glia by glutamine synthetase, 

however the conversion between glutamate and glutamine and vice versa as part of the 

glutamate-glutamine cycle is not necessarily in stoichiometric equivalence and depends heavily 

on the alternative fates of glutamate (McKenna, 2007).  Since we observed a preferential 

decrease in glutamine over time in the tetanus treated animals compared to the control animals in 

the absence of a corresponding change in glutamate, the results would seem to indicate a 

diversion of glutamate into alternative fates, such as the TCA cycle via conversion to α-

ketoglutarate for energy production or GABA synthesis (McKenna, 2007).  While GABA levels 

cannot be measured reliably using PRESS on a 7T system, spectral editing techniques that allows 

for the detection of GABA may provide additional insight. 
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The increase in GPC+PCh and Cr+PCr lends credence toward the theory of glutamate 

being diverted for energy generation.  Intriguingly, both of these metabolites were also 

significantly increased in epileptic tissue in our HR-MAS 1H MRS ex vivo study, presented in 

previously in Chapter 2.  GPC+PCh is typically a marker of membrane and phospholipid 

turnover, but it is difficult to determine whether or not the turnover favors the anabolic or 

catabolic side of membrane breakdown and synthesis pathways.  In general, elevated GPC is 

more indicative of membrane catabolism while elevated PCh is more indicative of membrane 

synthesis (Stanley, 2002) and the contributions of both to the 1H MRS signal are approximately 

equal in normal brain tissue (Miller et al., 1996).  It is also likely that both mechanisms are at 

work simultaneously, with the destruction of certain previously normal connections and the 

creation of new connections elsewhere that serves to reinforce the likelihood of future 

epileptiform activity.  Cr+PCr are key players in high-energy phosphate metabolism.  PCr serves 

as a high-energy phosphate reservoir, and may donate the phosphate group to ADP to generate 

high ATP be converted to creatine itself (Andres, Ducray, Schlattner, Wallimann, & Widmer, 

2008).  It is impossible to disentangle the relative contributions of Cr versus PCr to the Cr+PCr 

signal, but taken together, an elevated Cr+PCr could signal an upregulation of high-energy 

reserves to accommodate increased energy demand.  Taurine, as mentioned previously may serve 

as an important neuromodulator and relative increase in the tetanus treated animals may indicate 

its role as a compensatory mechanism to attenuate the hyperexcitable tendencies associated with 

epileptogenesis. 

Despite the ambiguity of the electrophysiology results in this study, the 1H MRS study 

still provided us with valuable clues on the changing energy demands associated with epilepsy 

development and IED activity.  Most interestingly, several key metabolites related to membrane 
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plasticity and energy demand observed here were also found in our HR-MAS 1H MRS study of 

human epileptic tissue and recapitulates many of the same themes of disturbed energy and 

metabolism balance.  This study provides the evidence that non-invasive 1H MRS, when 

combined with an animal model of epilepsy, can be a powerful tool to not only identify and 

validate metabolite biomarkers for epilepsy, but also as an opportunity for understanding the 

underlying biomolecular changes associated with epileptogenesis. 

The availability of a well-characterized animal model of epilepsy that can parallel the 

disorder in humans is extremely helpful for efficient drug testing and informing our mechanistic 

understand of how epilepsy develops and persists in humans.  Because of its flexibility, animal 

models can also serve as a useful bridge for translating basic molecular findings at the organism 

level and be used to predict treatment response in humans.  While many different models of 

epilepsy currently exist, they are used to study different aspects of epilepsy (Pitkänen et al., 

2005).  The neocortical tetanus toxin model in rats produces chronic, sustained IED with 

relatively few seizures and is ideal for our goal of studying the role of IED in epileptogenesis. 

Previous studies in our laboratory have shown that a distinct set of molecular changes 

promoting plasticity takes place in this animal model (Barkmeier et al., 2012) and these changes 

parallel what was seen in human epileptic tissues (Beaumont et al., 2012; Rakhade et al., 2007).  

In Chapter 3, we demonstrated the ability of 1H MRS to identify a unique metabolite expression 

profile that was highly predictive of epileptic tissue obtained from human subjects.  Here, we 

were able to show partial overlap in the metabolites associated with epileptogenesis in an animal 

model in vivo and those associated with established epilepsy in human neocortical tissue samples 

ex vivo.  Specifically, these overlapping metabolites include relative increases in Cr+PCr as well 
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as GPC or GPC+PCh in regions most affected by epileptiform changes, potentially reflecting a 

state of increased energy demand as well as enhanced synaptic plasticity.   

These metabolite markers have the potential to be developed into a non-invasive 

biomarker of epilepsy, which would be extremely useful both for research and clinical 

management.  Having a sensitive and reliable non-invasive biomarker would allow for the 

screening of early signs of epilepsy development in vulnerable individuals (e.g. traumatic brain 

injuries), assist in the clinical management of existing epilepsy patients, and enable monitoring 

of medication for therapeutic efficacy.  The latter application could open doors for the 

development a new class of disease modifying medications that have the potential to stop the 

development of epilepsy prior to seizure onset, unlike most of the ASDs available today, which 

provide symptomatic management only. 
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CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS  

5.1 Discussion 

Technological advances in the last hundred years have ushered in the era of modern 

medicine, finally allowing individuals with epilepsy to be perceived as having a true neurological 

condition with observable electrophysiological underpinnings.  Despite such remarkable 

progress, epilepsy has stubbornly remained a disorder that can only be managed 

symptomatically.  Surgical resection of focal seizure onset regions is the only treatment option 

that resembles a cure for the condition, and even so, long-term seizure freedom cannot be 

guaranteed. 

One of the biggest challenges currently facing epilepsy is the symptomatic nature by 

which the disorder is diagnosed and managed.  By the time they are diagnosed, epilepsy patients 

usually have already suffered at least several episodes of seizure.  This is akin to only treating 

patients with potential myocardial infarctions after they have experienced an infarction.  Given 

the self-reinforcing nature of seizure activity in the brain, the truly ideal time for treatment would 

be prior to the appearance of the first seizure episode.  The development of a reliable yet non-

invasive biomarker for epileptogenesis could dramatically change the way epilepsy is detected 

and managed. 

Such a biomarker would come with at least two very obvious benefits.  First, this tool 

would pave the way for the development of a new class of disease modifying pharmaceuticals 

that can target the underlying etiologies.  Even after such a drug has been developed, having 

these non-invasive biomarkers would dramatically increase the efficiency and decrease the cost 

of the necessary clinical trials required to bring the product to market (Engel et al., 2013).  Such 

a biomarker tool could help identify those most likely to develop epilepsy to participate in these 

clinical trails and also act as surrogate markers of efficacy, providing early information on drug 
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efficacy without having to use the delayed measure of seizure frequency as an indicator.  Second, 

a biomarker would enable the screening of vulnerable populations for early signs of 

epileptogenesis.  Those who are found have early signs of epileptogenesis are also the ones who 

would benefit the most from the disease modifying drugs, which may be able to halt the 

epileptogenic process before the patient even develops seizures. 

Previous studies in our laboratory have consistently observed robust but localized 

MAPK/CREB activations in regions of the brain most affected by epileptiform activity in the 

form of IEDs (Barkmeier et al., 2012; Beaumont et al., 2012).  The downstream effects of 

MAPK/CREB dependent transcriptional activation are numerous and typically favor cell growth 

and proliferation.  The downstream protein, macromolecule, and metabolic consequences 

associated with MAPK/CREB activation may be used as biomarkers for epilepsy.  We proposed 

here, that 1H MRS might be a sufficiently sensitive technique for detecting these changes.   

Besides accuracy and sensitivity, other features that are desirable in a biomarker tool for 

epilepsy include: 1) applicable and useful for both research and clinical care, 2) non-invasive for 

repeated follow up measurements and, 3) good spatial resolution for identification of the seizure 

focus.  One of the major advantages of 1H MRS is the ease by which the technique may be 

adapted for in vitro, ex vivo, in vivo, and clinical use.  Hypotheses generated in one experimental 

modality may be tested in a parallel approach in a different modality.  In vivo research and 

clinical 1H MRS are also non-invasive.  For the clinical side specifically, the technique uses 

much of the same equipment and hardware as conventional MRI scans and may be incorporated 

as an additional sequence for a patient who is already scheduled to receive a MRI.  While the 

spatial resolution of 1H MRS is not necessarily high compared to anatomical imaging, it is 

currently capable of achieving nominal resolutions of around 1 cm3 (Chu et al., 2000; Maudsley 
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et al., 2006).  This spatial resolution is adequate for our proposed application and is on par with 

the spatial resolution offered by subdural ECoG, typically at 1 cm2, and is also superior to the 

resolution of scalp EEG, estimated to be around 10 cm2 (Tao et al., 2005). 

One potential weakness of 1H MRS is its relative lack of sensitivity compared to more 

invasive counterparts such as microdialysis, high-performance liquid chromatography (HPLC), 

or even mass spectrometry, as it requires concentrations of at least 0.5 to 1 mmol/kgwet weight or 

greater (Govindaraju et al., 2000) for reliable detection.  This is a significant change in 

concentration for a well buffered organ, where concentration changes associated with 

physiologic functions are on the scale of nM to µM.  Nevertheless, and as reviewed in Chapter 1, 

many 1H MRS studies in the past few decades have examined metabolite changes associated 

with epilepsy, particularly in the temporal lobe epilepsies, with relatively consistent outcomes.  

The results of our own studies here also demonstrate that 1H MRS has sufficient sensitivity to 

detect metabolite changes associated with epilepsy.  These are good indications that epilepsy 

produces metabolite changes that are of a sufficient magnitude to be detected by 1H MRS. 

5.2 Identification of epileptic metabolite profile using HR-MAS 1H MRS 

Using HR-MAS 1H MRS on surgically resected human epileptic tissue was a natural 

place to start the search for epileptic biomarkers, as it maximizes the likelihood that a useful 

metabolite marker could be detected.  The HR-MAS system, at 11.7T, is exquisitely sensitive to 

small metabolite changes with well-resolved peaks, flat baseline, and ability to detect numerous 

metabolites that cannot easily be detected or resolved in vivo.  Its ability to analyze intact tissue 

is also more advantageous than traditional chemical extraction procedures (e.g. perchloric acid 

extraction), which can perturb the relative composition of compounds within the tissue.  Also, 

the study of epileptic tissue in patients with more established and intractable epilepsies, while not 
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ideal for studying epileptogenesis itself, it is useful for identifying metabolites that are key 

players in epilepsy and provide clues for the biochemical changes underlying the disorder.  

Dynamic changes in those metabolites could also be important modulators of epileptogenesis as 

well. 

The most remarkable finding from this study is the identification of a unique metabolite 

profile that is highly predictive of high and low spiking tissue samples.  The optimized accuracy 

of this predictive metabolite profile was 83% and these predictions can be made in a relatively 

systematic and non-biased manner.  While direct comparisons cannot be made given the 

uniqueness of this study, for perspective, the ability of 1H MRSI to correctly lateralize the side of 

the affected temporal lobe in temporal lobe epilepsy is reported to be between 62 - 86% 

(Capizzano et al., 2001; Cendes et al., 1997b).  These prediction accuracies appear comparable, 

but it can be argued that accurate classification of neocortical tissue samples both within and 

across different patients, as done here, is more challenging and more informative than simple left 

or right lateralization of the affected temporal lobes specifically in patients with temporal lobe 

epilepsies. 

Transcriptional microarray and histology data, all gathered as part of SBEP (Loeb, 2010), 

provided this study the opportunity to further characterize these metabolite changes and their 

associated metabolite changes.  Correlational clustering studies done between genes that were 

differentially expressed in high spiking samples and key metabolites revealed two major clusters 

centered on the down-regulation of lactate and the up-regulation of Cr+PCr in high spiking 

regions.  Together, the two clusters provided hints of energy and metabolic disequilibrium in the 

high spiking cortex.  The differentially expressed genes associated with the lactate cluster were 

also significantly enriched in genes participating in GPCR signaling and angiogenesis.  The 
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upregulation of genes associated with angiogenesis, and also validated by histology, was yet 

another piece of evidence that pointed to a state of persistent energy imbalance in the tissue.  

These findings suggest that energetic demand of the epileptic cortex outstrips production, 

resulting in the activation of various compensatory mechanisms and utilization of alternative 

energy sources.  The enrichment of GPCR related genes, while not necessarily surprising given 

the dramatic impact of recurrent electrical discharges on the epileptic neocortex, remain an 

interesting topic for further study and may implicate potential new pharmaceutical candidates for 

the treatment of epilepsy.  

While this study revealed some interesting findings on the metabolite profile of human 

epileptic tissue, there are several limitations that should be considered.  This study was 

performed on a relatively small number of patients, thus limiting the number of unique samples 

we had available for analysis.  As a result, the predictive model was generated from and operated 

on the same set of samples.  While statistical approaches like leave-one-out cross-validation and 

bootstrapping can be extremely helpful in characterizing how robust the predictive model is in 

these situations, there is no substitute for true validation in a completely new dataset.  Therefore, 

one of the key next steps for this project would be the collection of a new dataset for validation 

purposes.  The ex vivo nature of this study, where we are studying tissues outside of their natural 

environment (i.e. within a living organism), is also a major limitation.  This study is extremely 

useful as a first step to demonstrate that 1H MRS can detect metabolite differences unique to 

epilepsy, but to truly translate these findings to human epilepsy for research or clinical purposes 

would require further investigations in both animal models and human subjects in vivo. 

Clearly, much more work would need to be done to apply the findings of this study 

toward non-invasive clinical use.  Nevertheless, the predictive metabolite profile identified here 
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is a clear demonstration that 1H MRS is capable of discerning changes in focal metabolic 

environments associated with persistent epileptiform activity.  Using this metabolite profile, our 

prediction model was able to make systematic and unbiased classification of tissue with good 

accuracy.  Transcriptional microarray and histology data collected in parallel also provided 

useful insight into the events underlying the observed metabolic changes. 

5.3 Identification of key metabolites changes in an animal model of IED 

Applying 1H MRS to a longitudinal animal model of IED and epileptogenesis addressed 

two very important questions from a biological perspective.  First, it served as an important 

follow-up to the HR-MAS 1H MRS ex vivo human tissue study by directly examining metabolite 

changes associated with epileptogenesis and compared that with the profile found in our ex vivo 

human tissue study for similarities and differences.  Second, given the ambiguity over the role of 

IED in epileptogenesis, this was an opportunity to study how changes in IED load over time may 

lead to seizure generation and how that transition process may be characterized by changes in 

metabolite levels.  1H MRS measurements can help disentangle the relationship between IED and 

seizure development by addressing the following questions: a) are there any metabolites that are 

strongly related to IED frequency and if so, b) are those metabolite changes consistent with 

changes seen in established epilepsy.  Presence of one or more common metabolites between 

those associated with IED and those associated with epilepsy provide further proof that these two 

electrophysiological phenomena are linked.  The causal relationship between IEDs and seizures 

may be partially inferred based on the temporal play out of these two phenomena (e.g. IEDs 

preceding seizure activity or vice versa).  A more complete determination of causal effects would 

require directly manipulating of IED frequency itself and observing its impact on seizure 

occurrence.  Attempts at those types of causal experiments have been made by both 
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pharmacologic manipulations (Barkmeier et al., 2012) as well as by simple observations of the 

relationship between changes in IED frequency and rate of seizure onset based on natural 

variations in the experiment (White et al., 2010).  Both studies have concluded that IEDs play an 

important role in the generation of seizure activity. 

While shortcomings in the experimental design, as discussed in depth in Chapter 3, may 

have limited our interpretation of the longitudinal electrophysiology data collected from our in 

vivo rat study and prevented this studying from providing satisfactory results to address the 

second question, posed above, of how IEDs affect seizure development, the 1H MRS data 

remained a valuable source of information and can be used to address the first question of 

whether established epilepsy share common metabolite features with epileptogenesis.  A 

reasonable case can also be made for the interpretation of 1H MRS data in the context of 

historical electrophysiology information our laboratory collected previously on this animal 

model.  

The first interesting observation to emerge from this study was the difference in 

metabolite dynamics over time between CTL and TET groups, concentrated in the anterior 

portions of the rat brain, which also happened to coincide with the greatest number of IED 

observed in our experimental EEGs.  Many more metabolites in TET showed significant 

concentration changes over the study period, even after correcting for multiple comparisons (7 

metabolites in TET versus 1 metabolite in CTL).  This phenomenon could be a reflection of the 

dramatic plasticity and remodeling taking place in epileptogenic regions of the brain. 

Several metabolites also showed significantly different rates of change over time 

depending on the treatment the animal received.  As mentioned in Chapter 3, glutamine was the 

only metabolite to survive multiple comparison correction and its preferential decrease in tetanus 
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treated animals without a concurrent increase in glutamate levels suggested the possibility that 

glutamate was being diverted to alternative fates, such as energy production.  Despite not being 

statistically significant after multiple comparison correction, increases in taurine, a 

neuromodulator of plasticity, and GPC+PCh, an indicator of increased membrane turnover, point 

to significant tissue remodeling within the cortex, which would presumably be an energetically 

demanding process given the high cost of de novo membrane synthesis (Harris & Attwell, 2012).  

This theory of increased energy demand was also corroborated by the preferential increase in 

Cr+PCr levels, another key player in high-energy phosphate metabolism, although the change 

was not statistically significant (p < 0.07). 

Similar to the results of our ex vivo human tissue study, the metabolite changes over time 

observed in this study, also reflected a state of energy and metabolism disequilibrium in epileptic 

tissues.  Changes seen in GPC+PCh and Cr+PCr, despite neither being statistically significant 

after multiple comparisons correction in this study, very much parallels their involvement as 

important predictors of epileptic in our ex vivo human study.  While this overlap in metabolites 

should be interpreted with caution as neither were statistically significant in a technical sense, it 

is still a cause for optimism, considering differences in experimental design between the two 

studies, with one being performed on the superficial layers of surgically excised human 

neocortex and the other being performed on the full thickness cortex of an intact rat model.  

While further studies are needed to validate these results, this study provides additional evidence 

that 1H MRS may be a viable tool for identifying non-invasive biomarkers of epilepsy. 

Beyond the obvious lack of high quality and reliable long term EEG recording from these 

animals, this study has several other limitations worthy of consideration.  Given the high level of 

metabolite dynamics observed in the TET animal over the course of study, future studies could 
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benefit from having more frequent MRS sessions than the every other week schedule we used for 

this study to better capture the behavior of these dynamics.  For this tetanus toxin animal model 

in particular, our observation of control animals producing more interictal spikes than tetanus 

treated animals was surprising and raises the important question of what the ideal control group 

(e.g. vehicle injection versus sham surgery with no injection) should be and just what the impact 

of the surgery itself has on the course of epilepsy development in these animal models.  Epilepsy 

itself is a disorder with a heterogeneous set of symptoms and semiologies.  A truly useful 

biomarker of epilepsy would have the ability to detect metabolite changes in several different 

forms of the disorder.  Therefore, the study of other well-characterized animal models of 

epilepsy could also be extremely informative. 

5.4 Future directions 

While many potential future studies have been suggested through the various chapters 

and will not be repeated here, a few more general thoughts are included here for additional 

consideration.  It should be mentioned that a pilot study determining the usefulness of 1H MRS 

in human epilepsy patients, discussed below, is currently underway. 

5.4.1 Application of 1H MRS to human epileptic patients in vivo 

Despite the importance of tissue and animal studies, a critical test for the viability of this 

approach is to conduct them in humans.  Applying 1H MRS to human epileptic patients in vivo is 

an important step to determine whether or not this we have capability to detect these changes in a 

clinical setting.  As we are interested in studying how metabolites specifically in the cortex 

change in response to disease onset and progression, high spatial resolution and whole brain 

coverage are especially necessary and also difficult to obtain using conventional approaches as 

there are no regions of interest that can be defined a priori.  Continued development of the EPSI 
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sequence (Posse et al., 1994), capable of full brain coverage and effective spatial resolution of 

approximately 1 cm3, by Maudsley and colleagues in recent years has made this study a 

possibility (Maudsley et al., 2006; Maudsley et al., 2009b). 

Two studies thus far have used 1H EPSI in epilepsy patients (Maudsley et al., 2010; 

Mueller et al., 2010) and have also shown widespread decreases in NAA level changes, similar 

to what has been described in the literature.  However, to the best of our knowledge, no studies 

to date have tried to isolate the gray matter specific metabolite level changes in epilepsy patients 

in vivo and attempted to correlate these changes to quantitative electrophysiology recorded from 

ECoG obtained from the patients during the surgical workup to precisely identify the location of 

their seizure focus.  The aim of this in vivo human study would be to show how metabolite levels 

as detected by 1H EPSI would differ between regions of high versus low IED rates in patients 

with intractable epilepsy. 

We are currently conducting a prospective study on 24 adult patients between the ages of 

18 and 65 with the diagnosis of intractable epilepsy who are undergoing evaluation for epilepsy 

surgery at the Comprehensive Epilepsy Program at Wayne State University/Detroit Medical 

Center.  Inclusion and exclusion criteria are provided in Supplementary Table 5.1. 

Briefly, all patients will receive the 1H EPSI scan several weeks prior to their scheduled 

surgery date.  The scans are performed on a 3 Tesla Siemens Verio whole-body MR scanner with 

a 12 channel 1H volume head coil. The scanning protocol consists of acquiring an initial set of 

scout images, automatic and manual shimming, collecting the 3D EPSI data, followed by a set of 

T1-weighted anatomic MRI images.  The entire scanning process takes approximately 50 

minutes. 
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The initial 3-plane scout image acquisition will be first obtained to ensure proper 

alignment, patient cooperation, and image quality.  The scout images will be used to prescribe 

the in vivo 1H EPSI, with the slices oriented -15° above the AC-PC line.  Shimming, for 

improving B0 field homogeneity for maximal spectral resolution, will be done automatically with 

additional manual optimization.  The specifics of the 1H EPSI sequence are described elsewhere 

(Ebel & Maudsley, 2003; Ebel, Soher, & Maudsley, 2001; Maudsley et al., 2009a).  

Acquired spectroscopic data will be analyzed using the MIDAS software (Maudsley et 

al., 2006), designed specifically for processing 1H EPSI data.  To take full advantage of high 

resolution whole brain ¹H MRS, we will co-register spectroscopic data with electrophysiology 

data from intracranial electrodes using a combination of pre-implantation anatomical MRI, post 

implantation CT, and intraoperative photographs.  IED rates, as determined from three distinct 

10 minute segments of awake intracranial EEG recordings, along with covariates such as age, 

gender, and years of disorder, will be used to predict levels of NAA, Cr+PCr, and GPC+PCh in a 

repeated measures type linear regression model.  If IED dependent changes in metabolite levels 

are seen, a logistic regression model similar to the one used in the ex vivo human tissue study can 

be implement to predict whether a particular voxel or group of voxels could be epileptic in 

nature. 

A preliminary analysis of our 1H EPSI in two subjects who underwent temporal 

lobectomies without long term ECoG recordings have been performed.  In the absence of actual 

electrophysiology, placement intracranial electrodes were simulated in this preliminary analysis 

to cover portions of the superior and middle temporal lobe in both patients, bilaterally.  These 

simulated electrode locations are used to guide voxel extraction from the spectroscopic data for 

analysis.  In all, 121 unique voxels between 2 patients, with 55 voxels in the left temporal lobe 
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and 66 voxels in the right temporal lobe were analyzed using repeated measures GLM, where we 

tested for side to side differences in either NAA, Cr+PCr, or GPC+PCh (ipsilateral or 

contralateral to affected temporal lobe).  We failed to detect ipsilateral versus contralateral 

differences in GPC+PCh and Cr+PCr in these two subjects, but a slight increase in NAA levels 

(uncorrected p < 0.05) was observed in the ipsilateral cortex compared to the contralateral cortex.  

Representative sample spectra from both the cortex of the ipsilateral and contralateral temporal 

lobes are shown in Figure 5.1. 

 
Figure 5.1 Representative spectra from bilateral temporal lobe neocortex in a representative 
patient.  Ipsilateral refers to the side of known seizure activity based on scalp EEG measures and 
contralateral refers to a matching location on the opposite side.  NAA levels appear elevated in 
the ipsilateral side compared to the contralateral side. 
 

While these metabolite findings need to be replicated and confirmed with the full study 

sample, this preliminary analysis serves as a demonstration of feasibility. Based on the quality of 

the data obtained from these two subjects, 1H EPSI appears to be capable of collecting spectra of 

adequate quality in the neocortex for the analysis of NAA, Cr+PCr, and GPC+PCh in our 

epilepsy patient population while its relatively high spatial resolution would facilitate successful 

co-registrations to subdural ECoG data. 

5.4.2 Exploring energetics with 31P and 13C spectroscopy 

The results of our 1H MRS studies implicate, in multiple lines of evidence, that epileptic 

tissues consistently exhibit signs of energy derangement, where the demand for energy appear to 

NAA 

Cr+PCr 

GPC 
+PCh 

Ipsilateral Contralateral 
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exceed that of supply and alternative energy sources are being recruited, based on inferences 

made from other metabolites such as the relative decreases in lac and Gln.  Because of the 

overlap in resonances between Cr and PCr to form the combined Cr+PCr peak, it is impossible to 

disambiguate the relative contributions Cr compared to PCr and therefore difficult to say if the 

observed elevation in Cr+PCr is due to increases in Cr or PCr alone or due to simultaneous 

increases in both, where each of those scenarios could lead to a different interpretation of the 

results.  A similar issue applies to GPC+PCh, particularly in vivo, where GPC and PCh 

resonances overlap but individually they are associated with different sides of the membrane 

turnover equation (i.e. synthesis versus breakdown). 

To improve our understanding of what is happening, especially in vivo, with Cr, PCr, 

GPC, and PCh, 31P MRS could be implemented as a supplementary technique, where those 

individual metabolites, especially Cr and PCr can be easily discerned.  GPC and PCh would be 

incorporated into the peaks for phosphodiesters (PDE) and phosphomonoesters (PME), 

respectively.  Fortunately, interpretation of PDE and PME levels remains very similar to that of 

GPC and PCh, where PDE are typically considered membrane breakdown components while 

PME are considered membrane synthesis precursors (Stanley, 2002). 

Our results of decreased Lac and Gln on 1H MRS led us to theorize that Lac and Glu may 

have been diverted as alternative sources of energy.  While we do not have a direct way of 

testing that hypothesis using 1H MRS, 13C MRS studies may be a useful in this setting.  13C MRS 

is a well characterized and non-invasive way to measure metabolite synthesis rates and metabolic 

flux (Boumezbeur et al., 2010; Shen & Rothman, 2002), although it is not a widely adopted 

technique due to the need for hyper-polarization or enrichment of 13C isotopes.  Nevertheless, if 
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feasible, a 13C study could help elucidate the fates of both Lac and Glu and how they may relate 

to the TCA cycle. 

5.5 The future of MRS in epilepsy 

MRS as a technique can be a very versatile for identifying changes in a variety of 

compounds, across a variety of experimental environments.  However, it can be made much 

more powerful with the integration of various other experimental modalities, such as 

electrophysiology, genomics, pharmacological manipulations, optogenetic manipulations, 

dissection of animal models, and a variety of other molecular studies, as evidenced by the studies 

presented in this dissertation.  Much work still needs to be done to better identify and validate 

biomarkers that can reflect the underlying mechanistic changes taking place in epilepsy, but 1H 

MRS shows great promise. 

The results of this project indicate that 1H MRS does have the ability to detect metabolite 

differences between epileptic and non-epileptic regions and that our finds are suggestive of an 

overlap in metabolite profile between established epilepsy cases and epileptogenesis in an animal 

model.  These studies are crucial first steps for demonstrating the potential of this technique for 

non-invasive epilepsy biomarker identification.  When applied appropriately, this is a technique 

that has the potential to dramatically change how clinicians diagnose and manage epilepsy and 

inform the direction of future ASD research efforts. 
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APPENDIX A: LIST OF METABOLITES FITTED IN THIS PROJECT 

Complete list of fitted metabolites for HR-MAS 1H MRS (CPMG) at 11.7T 

1. Acetate 
2. Alanine 
3. Aspartate 
4. Betaine 
5. Carnitine 
6. Choline 
7. Citrate 
8. Creatine plus phosphocreatine 
9. GABA 
10. Glutathione 
11. Glycerophosphorylcholine 
12. Glutamine 
13. Glutamate 
14. Glycine 
15. myo-Inositol 
16. Lactate 
17. N-acetylaspartate 
18. N-acetylaspartyl glutamic acid 
19. Phosphorylcholine 
20. Phosphorylethanolamine 
21. Pyruvate 
22. scyllo-Inositol 
23. Succinate 
24. Taurine 
25. Simulated macromolecule at 1.67 ppm 
26. Simulated macromolecule at 1.75 ppm 
27. Simulated macromolecule at 1.40 ppm 
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Complete list of fitted metabolites for 1H SVS MRS (PRESS) at 7T 

1. Alanine 
2. Aspartate 
3. Cr+PCr 
4. GPC+PCh 
5. GABA 
6. Glucose 
7. Glutamine 
8. Glutamate 
9. Glutathione 
10. myo-Inositol 
11. Lactate 
12. N-acetylaspartate 
13. N-acetylaspartyl glutamic acid 
14. scyllo-Inositol 
15. Taurine 
16. Simulated macromolecule at 1.3 ppm 
17. Simulated macromolecule at 0.9 ppm 
18. Simulated macromolecule at 2.0 ppm 
19. Simulated macromolecule at 1.2 ppm 
20. Simulated macromolecule at 1.4 ppm 
21. Simulated macromolecule at 1.7 ppm 
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APPENDIX B: SUPPLEMENTARY TABLE 

 
Supplementary Table 5.1 Inclusion and exclusion criteria for patient recruitment in human 
epilepsy study using whole brain 1H EPSI. 

 

1 Age 18 or older 1 Presence of metal implants; may be hazardous to patient 
health or cause significant signal distortion

2 Patients with history of intractable epilepsy being evaluated 
through the Comprehensive Epilepsy Program and Wayne 
State University/Detroit Medical Center

2 Brain malformations that may confound identification of key 
anatomical landmarks

3 Are planning on undergoing extraoperative subdural 
intracranial EEG recordings as part of their presurgical 
evaluation

3 Patient discomfort, anxiety, or inability to remain still during 
duration of scan

4 Are willing to undergo an additional hour of MR scanning for 
research purposes

Inclusion criteria Exclusion criteria
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Epilepsy is a serious neurological disorder that affects 1% percent of the global 

population.  Despite its status as one of the oldest neurological disorders known to man, its 

mechanisms remain poorly understood.  Available medications are not curative but provide 

symptomatic management and do not work for well for more than 30 percent of patients.  

Because it is nearly impossible to predict on an individual level who will eventually develop 

epilepsy, it is also a disorder that can only be diagnosed after the patient has experienced 

established seizure activity, eliminating any possibility of stopping the disorder in its prodromal 

phase, before the patients are symptomatic.  Availability of a reliable and non-invasive 

biomarker tool that can predict and identify the development of epilepsy would dramatically 

change how the disorder is detected, monitored, managed, and treated.  In this project, we tested 

the potential of 1H MRS to provide metabolite biomarkers of epilepsy and epileptogenesis, both 

in human neocortical tissue obtained from intractable epilepsy patients who underwent resective 

surgery and also in a longitudinal rat model of epileptogenesis, using interictal epileptiform 

discharges as a surrogate indicator of disease progression. Using 1H MRS, we found unique 

metabolite differences that are highly predictive of epileptic and non-epileptic neocortex in 

humans that also partially overlaps with findings from our rat model.  These findings provide 
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evidence that 1H MRS is capable of identifying metabolite changes specific to epilepsy and may 

lead to reliable and non-invasive biomarkers of epilepsy and epileptogenesis in the future. 
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AUTOBIOGRAPHICAL STATEMENT 

How is it that a few pools of ions across some semi-permeable membranes could generate 

the electrical activities allowing us to see, breathe, think, laugh—when those same ions and 

membranes can give us disorders like epilepsy?   

In his own words, my father once said that he was born to be an engineer.  He perceived 

the world in a series of question.  How is this made?  How does it work?  How can I use this to 

make my own work better?  From as far back as I could remember, he had always tried to foster 

and encourage a similar mindset in me—ask questions, solve problems.  A graduate of the 

University of Michigan with a degree in Biomedical Engineering, and currently a student in the 

MD/PhD program at Wayne State University, I am constantly mindful of the intersections 

between science, medicine, knowledge, and applications. 

I have been blessed with the opportunity to work on this project under the supervision of 

Drs. Jeffrey Loeb and Jeffrey Stanley.  This project has been an incredibly enriching experience, 

in terms of my intellectual, academic, technical, and social development.  This project has been 

very unique in the sense that we attempted to apply technology to a real medical disorder in a 

way that can have significant clinical impact, while continuing to learn more about fundamental 

aspects of the disorder.  Epilepsy is an incredibly interesting disorder to study, not only for its 

complexities, but also for the tantalizing clues it provides for how our own brain functions. 

Ideally, I would like to continue my future research work within neuroscience, perhaps 

even in epilepsy.  I am especially interested in learning more about the molecular, physiologic, 

and electrophysiological factors underpinning behavior and cognitive function and how that 

information may be in turn used to inform clinical understanding and management of neurologic 

and psychiatric conditions. 
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